6 research outputs found

    Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p

    Get PDF
    Post-translational modification of proteins with glycosylation is of key importance in many biological systems in eukaryotes, influencing fundamental biological processes and regulating protein function. Changes in glycosylation are therefore of interest in understanding these processes and are also useful as clinical biomarkers of disease. The presence of glycosylation can also inhibit protease digestion and lower the quality and confidence of protein identification by mass spectrometry. While deglycosylation can improve the efficiency of subsequent protease digest and increase protein coverage, this step is often excluded from proteomic workflows. Here, we performed a systematic analysis that showed that deglycosylation with peptide-N-glycosidase F (PNGase F) prior to protease digestion with AspN or trypsin improved the quality of identification of the yeast cell wall proteome. The improvement in the confidence of identification of glycoproteins following PNGase F deglycosylation correlated with a higher density of glycosylation sites. Optimal identification across the proteome was achieved with PNGase F deglycosylation and complementary proteolysis with either AspN or trypsin. We used this combination of deglycosylation and complementary protease digest to identify changes in the yeast cell wall proteome caused by lack of the Alg3p protein, a key component of the biosynthetic pathway of protein N-glycosylation. The cell wall of yeast lacking Alg3p showed specifically increased levels of Cis3p, a protein important for cell wall integrity. Our results showed that deglycosylation prior to protease digestion improved the quality of proteomic analyses even if protein glycosylation is not of direct relevance to the study at hand

    Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins

    Get PDF
    Asparagine-linked glycosylation is a common post translational modification of proteins in eukaryotes. Mutations in the human ALG3 gene cause changed levels and altered glycan structures on mature glycoproteins and are the cause of a severe congenital disorder of glycosylation (CDG-Id). Diverse glycoproteins are also under-glycosylated in Saccharomyces cerevisae alg3 mutants. Here we analyzed site-specific glycosylation occupancy in this yeast model system using peptide-N-glycosidase F to label glycosylation sites with an asparagine-aspartate conversion that creates a new endoproteinase AspN cleavage site, followed by proteolytic digestion, and detection of peptides and glycopeptides by LC-ESI-MS/MS. We used this analytical method to identify and measure site specific glycosylation occupancy in alg3 mutant and wild type yeast strains. We found decreased site specific N-glycosylation occupancy in the alg3 knockout strain preferentially at Asn-Xaa-Ser sequences located in secondary structural elements, features previously associated with poor glycosylation efficiency. Furthermore, we identified 26 previously experimentally unverified glycosylation sites. Our results provide insights into the underlying mechanisms of disease in CDG-Id, and our methodology will be useful in site specific glycosylation analysis in many model systems and clinical applications

    Polypeptide binding specificities of Saccharomyces cerevisiae oligosaccharyltransferase accessory proteins Ost3p and Ost6p

    No full text
    Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues
    corecore