12 research outputs found

    A Hybrid Chebyshev-ICA Image Fusion Method Based on Regional Saliency

    Get PDF
    An image fusion method that performs robustly for image sets heavily corrupted by noise is presented in this paper. The approach combines the advantages of two state-of-the-art fusion techniques, namely Independent Component Analysis (ICA) and Chebyshev Poly-nomial Analysis (CPA) fusion. Fusion using ICA performs well in transferring the salient features of the input images into the composite output, but its performance deteriorates severely under mild to moderate noise conditions. CPA fusion is robust under severe noise conditions, but eliminates the high frequency information of the images involved. We pro-pose to use ICA fusion within high activity image areas, identified by edges and strong textured surfaces and CPA fusion in low activity areas identified by uniform background regions and weak texture. A binary image map is used for selecting the appropriate method, which is constructed by a standard edge detector followed by morphological operators. The results of the proposed approach are very encouraging as far as joint fusion and denoising is concerned. The works presented may prove beneficial for future image fusion tasks in real world applications such as surveillance, where noise is heavily present

    Classification of Neuroticism using Psychophysiological Signals During Speaking Task based on Two Different Baseline Measurements

    Get PDF
    Biosignals from psychophysiological changes can be measured as electroencephalography (EEG), heart rate, skin conductance, and respiration rate, to name a few. They have been used in many research areas including human personality. Neuroticism, one of the five major traits underlie personality, reflects stable tendency towards experiencing negative emotions. An understanding of how neuroticism influences responses to psychological distress may shed a light upon individual differences in emotion self-regulation. To study the causal relationship between neuroticism and psychophysiological signals, a selection of appropriate baseline signals as a reference signal is essential to compare to current experimental signals of interest. Thus, we present classification of neuroticism using psychophysiological signals obtained during a speaking task based on two different baseline measurements (eyes closed and eyes open). Eight healthy male participants consisting of four neurotic and four emotionally stable subjects were recruited based on Eysenck Personality Inventory (EPI) and Big Five Inventory (BFI) scoring system. Four features including mean EEG beta power, heart rate, skin conductance, and respiration rate were used for the classification using a Support Vector Machine (SVM). The results showed higher classification accuracy achieved with eyes open as the baseline (62.5%) as compared to eyes closed as the baseline (37.5%), during speaking task. This indicate the importance of selecting appropriate baseline in analysis involving EEG and physiological signals

    3D printed robot hand structure using four-bar linkage mechanism for prosthetic application

    Get PDF
    Trans-radial prosthesis is a wearable device that intends to help amputees under the elbow to replace the function of the missing anatomical segment that resembles an actual human hand. However, there are some challenging aspects faced mainly on the robot hand structural design itself. Improvements are needed as this is closely related to structure efficiency. This paper proposes a robot hand structure with improved features (four-bar linkage mechanism) to overcome the deficiency of using the cable-driven actuated mechanism that leads to less structure durability and inaccurate motion range. Our proposed robot hand structure also took into account the existing design problems such as bulky structure, unindividual actuated finger, incomplete fingers and a lack of finger joints compared to the actual finger in its design. This paper presents the improvements achieved by applying the proposed design such as the use of a four-bar linkage mechanism instead of using the cable-driven mechanism, the size of an average human hand, five-fingers with completed joints where each finger is moved by motor individually, joint protection using a mechanical stopper, detachable finger structure from the palm frame, a structure that has sufficient durability for everyday use and an easy to fabricate structure using 3D printing technology. The four-bar linkage mechanism is the use of the solid linkage that connects the actuator with the structure to allow the structure to move. The durability was investigated using static analysis simulation. The structural details and simulation results were validated through motion capture analysis and load test. The motion analyses towards the 3D printed robot structure show 70–98% similar motion range capability to the designed structure in the CAD software, and it can withstand up to 1.6 kg load in the simulation and the real test. The improved robot hand structure with optimum durability for prosthetic uses was successfully developed

    A Systematic Review and Analysis of Intelligence-Based Pathfinding Algorithms in the Field of Video Games

    No full text
    This paper provides a performance comparison of different pathfinding Algorithms used in video games. The Algorithms have been classified into three categories: informed, uninformed, and metaheuristic. Both a practical and a theoretical approach have been adopted in this paper. The practical approach involved the implementation of specific Algorithms such as Dijkstra’s, A-star, Breadth First Search, and Greedy Best First. The comparison of these Algorithms is based on different criteria including execution time, total number of iterations, shortest path length, and grid size. For the theoretical approach, information was collected from various papers to compare other Algorithms with the implemented ones. The Unity game engine was used in implementing the Algorithms. The environment used was a two-dimensional grid system

    A Systematic Review and Analysis of Intelligence-Based Pathfinding Algorithms in the Field of Video Games

    No full text
    This paper provides a performance comparison of different pathfinding Algorithms used in video games. The Algorithms have been classified into three categories: informed, uninformed, and metaheuristic. Both a practical and a theoretical approach have been adopted in this paper. The practical approach involved the implementation of specific Algorithms such as Dijkstra’s, A-star, Breadth First Search, and Greedy Best First. The comparison of these Algorithms is based on different criteria including execution time, total number of iterations, shortest path length, and grid size. For the theoretical approach, information was collected from various papers to compare other Algorithms with the implemented ones. The Unity game engine was used in implementing the Algorithms. The environment used was a two-dimensional grid system

    Classification of Human Daily Activities Using Ensemble Methods Based on Smartphone Inertial Sensors

    No full text
    Increasing interest in analyzing human gait using various wearable sensors, which is known as Human Activity Recognition (HAR), can be found in recent research. Sensors such as accelerometers and gyroscopes are widely used in HAR. Recently, high interest has been shown in the use of wearable sensors in numerous applications such as rehabilitation, computer games, animation, filmmaking, and biomechanics. In this paper, classification of human daily activities using Ensemble Methods based on data acquired from smartphone inertial sensors involving about 30 subjects with six different activities is discussed. The six daily activities are walking, walking upstairs, walking downstairs, sitting, standing and lying. It involved three stages of activity recognition; namely, data signal processing (filtering and segmentation), feature extraction and classification. Five types of ensemble classifiers utilized are Bagging, Adaboost, Rotation forest, Ensembles of nested dichotomies (END) and Random subspace. These ensemble classifiers employed Support vector machine (SVM) and Random forest (RF) as the base learners of the ensemble classifiers. The data classification is evaluated with the holdout and 10-fold cross-validation evaluation methods. The performance of each human daily activity was measured in terms of precision, recall, F-measure, and receiver operating characteristic (ROC) curve. In addition, the performance is also measured based on the comparison of overall accuracy rate of classification between different ensemble classifiers and base learners. It was observed that overall, SVM produced better accuracy rate with 99.22% compared to RF with 97.91% based on a random subspace ensemble classifier

    Emotion Self-Regulation in Neurotic Students: A Pilot Mindfulness-Based Intervention to Assess Its Effectiveness through Brain Signals and Behavioral Data

    No full text
    Neuroticism has recently received increased attention in the psychology field due to the finding of high implications of neuroticism on an individual’s life and broader public health. This study aims to investigate the effect of a brief 6-week breathing-based mindfulness intervention (BMI) on undergraduate neurotic students’ emotion regulation. We acquired data of their psychological states, physiological changes, and electroencephalogram (EEG), before and after BMI, in resting states and tasks. Through behavioral analysis, we found the students’ anxiety and stress levels significantly reduced after BMI, with p-values of 0.013 and 0.027, respectively. Furthermore, a significant difference between students in emotion regulation strategy, that is, suppression, was also shown. The EEG analysis demonstrated significant differences between students before and after MI in resting states and tasks. Fp1 and O2 channels were identified as the most significant channels in evaluating the effect of BMI. The potential of these channels for classifying (single-channel-based) before and after BMI conditions during eyes-opened and eyes-closed baseline trials were displayed by a good performance in terms of accuracy (~77%), sensitivity (76–80%), specificity (73–77%), and area-under-the-curve (AUC) (0.66–0.8) obtained by k-nearest neighbor (KNN) and support vector machine (SVM) algorithms. Mindfulness can thus improve the self-regulation of the emotional state of neurotic students based on the psychometric and electrophysiological analyses conducted in this study

    Role of Power Converters in Inductive Power Transfer System for Public Transport—A Comprehensive Review

    No full text
    IPT (inductive power transfer) charging is a highly flexible concept that allows for charging at any possible opportunity and is highly versatile for vehicles of all sizes. IPT wireless charging technology employs high-power inductive energy transfer between the components embedded into streets and the receiving equipment mounted below the vehicle. When the vehicle moves over the charging point, the contactless charging process is initiated between the components and the vehicle. In this work, the role of power converter topologies in IPT systems are studied for electric vehicle (EV) charging applications. Further, the predominant topologies are compared and analyzed in detail. The contingency in misalignment, loading and frequency shift are discussed for various converter topologies. The tolerance in misalignment poses serious challenges for wireless chargers in EVs. Therefore, there is currently a need to design a symmetric IPT system with multiple decoupled receiving coils. The significance of power inverter topologies for achieving resonance, as well as the generation of high-frequency supply, has been studied in detail. Experimental waveforms that are related to the explanations in this work are provided to substantiate the advantages regarding the converters

    Detection of Collaterals from Cone-Beam CT Images in Stroke

    No full text
    Collateral vessels play an important role in the restoration of blood flow to the ischemic tissues of stroke patients, and the quality of collateral flow has major impact on reducing treatment delay and increasing the success rate of reperfusion. Due to high spatial resolution and rapid scan time, advance imaging using the cone-beam computed tomography (CBCT) is gaining more attention over the conventional angiography in acute stroke diagnosis. Detecting collateral vessels from CBCT images is a challenging task due to the presence of noises and artifacts, small-size and non-uniform structure of vessels. This paper presents a technique to objectively identify collateral vessels from non-collateral vessels. In our technique, several filters are used on the CBCT images of stroke patients to remove noises and artifacts, then multiscale top-hat transformation method is implemented on the pre-processed images to further enhance the vessels. Next, we applied three types of feature extraction methods which are gray level co-occurrence matrix (GLCM), moment invariant, and shape to explore which feature is best to classify the collateral vessels. These features are then used by the support vector machine (SVM), random forest, decision tree, and K-nearest neighbors (KNN) classifiers to classify vessels. Finally, the performance of these classifiers is evaluated in terms of accuracy, sensitivity, precision, recall, F-Measure, and area under the receiver operating characteristics curve. Our results show that all classifiers achieve promising classification accuracy above 90% and able to detect the collateral and non-collateral vessels from images

    Detection of Collaterals from Cone-Beam CT Images in Stroke

    No full text
    Collateral vessels play an important role in the restoration of blood flow to the ischemic tissues of stroke patients, and the quality of collateral flow has major impact on reducing treatment delay and increasing the success rate of reperfusion. Due to high spatial resolution and rapid scan time, advance imaging using the cone-beam computed tomography (CBCT) is gaining more attention over the conventional angiography in acute stroke diagnosis. Detecting collateral vessels from CBCT images is a challenging task due to the presence of noises and artifacts, small-size and non-uniform structure of vessels. This paper presents a technique to objectively identify collateral vessels from non-collateral vessels. In our technique, several filters are used on the CBCT images of stroke patients to remove noises and artifacts, then multiscale top-hat transformation method is implemented on the pre-processed images to further enhance the vessels. Next, we applied three types of feature extraction methods which are gray level co-occurrence matrix (GLCM), moment invariant, and shape to explore which feature is best to classify the collateral vessels. These features are then used by the support vector machine (SVM), random forest, decision tree, and K-nearest neighbors (KNN) classifiers to classify vessels. Finally, the performance of these classifiers is evaluated in terms of accuracy, sensitivity, precision, recall, F-Measure, and area under the receiver operating characteristics curve. Our results show that all classifiers achieve promising classification accuracy above 90% and able to detect the collateral and non-collateral vessels from images
    corecore