91 research outputs found

    A Mercury Lander Mission Concept Study for the Next Decadal Survey

    Get PDF
    Mariner 10 provided our first closeup reconnaissance of Mercury during its three flybys in 1974 and 1975. MESSENGERs 20112015 orbital investigation enabled numerous discoveries, several of which led to substantial or complete changes in our fundamental understanding of the planet. Among these were the unanticipated, widespread presence of volatile elements (e.g., Na, K, S); a surface with extremely low Fe abundance whose darkening agent is likely C; a previously unknown landformhollows that may form by volatile sublimation from within rocks exposed to the harsh conditions on the surface; a history of expansive effusive and explosive volcanism; substantial radial contraction of the planet from interior cooling; offset of the dipole moment of the internal magnetic field northward from the geographic equator by ~20% of the planets radius; crustal magnetization, attributed at least in part to an ancient field; unexpected seasonal variability and relationships among exospheric species and processes; and the presence in permanently shadowed polar terrain of water ice and other volatile materials, likely to include complex organic compounds. Mercurys highly chemically reduced and unexpectedly volatile-rich composition is unique among the terrestrial planets and was not predicted by earlier hypotheses for the planets origin. As an end-member of terrestrial planet formation, Mercury holds unique clues about the original distribution of elements in the earliest stages of the Solar System and how planets (and exoplanets) form and evolve in close proximity to their host stars. The BepiColombo mission promises to expand our knowledge of this planet and to shed light on some of the mysteries revealed by the MESSENGER mission. However, several fundamental science questions raised by MESSENGERs pioneering exploration of Mercury can only be answered with in situ measurements from the planets surface

    The fundamental connections between the Solar System and exoplanetary science

    Get PDF
    Over the past several decades, thousands of planets have been discovered outside our Solar System. These planets exhibit enormous diversity, and their large numbers provide a statistical opportunity to place our Solar System within the broader context of planetary structure, atmospheres, architectures, formation, and evolution. Meanwhile, the field of exoplanetary science is rapidly forging onward toward a goal of atmospheric characterization, inferring surface conditions and interiors, and assessing the potential for habitability. However, the interpretation of exoplanet data requires the development and validation of exoplanet models that depend on in situ data that, in the foreseeable future, are only obtainable from our Solar System. Thus, planetary and exoplanetary science would both greatly benefit from a symbiotic relationship with a two way flow of information. Here, we describe the critical lessons and outstanding questions from planetary science, the study of which are essential for addressing fundamental aspects for a variety of exoplanetary topics. We outline these lessons and questions for the major categories of Solar System bodies, including the terrestrial planets, the giant planets, moons, and minor bodies. We provide a discussion of how many of these planetary science issues may be translated into exoplanet observables that will yield critical insight into current and future exoplanet discoveries

    Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data

    Get PDF
    BACKGROUND: In recent years, outcome prediction models using artificial neural network and multivariable logistic regression analysis have been developed in many areas of health care research. Both these methods have advantages and disadvantages. In this study we have compared the performance of artificial neural network and multivariable logistic regression models, in prediction of outcomes in head trauma and studied the reproducibility of the findings. METHODS: 1000 Logistic regression and ANN models based on initial clinical data related to the GCS, tracheal intubation status, age, systolic blood pressure, respiratory rate, pulse rate, injury severity score and the outcome of 1271 mainly head injured patients were compared in this study. For each of one thousand pairs of ANN and logistic models, the area under the receiver operating characteristic (ROC) curves, Hosmer-Lemeshow (HL) statistics and accuracy rate were calculated and compared using paired T-tests. RESULTS: ANN significantly outperformed logistic models in both fields of discrimination and calibration but under performed in accuracy. In 77.8% of cases the area under the ROC curves and in 56.4% of cases the HL statistics for the neural network model were superior to that for the logistic model. In 68% of cases the accuracy of the logistic model was superior to the neural network model. CONCLUSIONS: ANN significantly outperformed the logistic models in both fields of discrimination and calibration but lagged behind in accuracy. This study clearly showed that any single comparison between these two models might not reliably represent the true end results. External validation of the designed models, using larger databases with different rates of outcomes is necessary to get an accurate measure of performance outside the development population

    Exoplanet diversity in the era of space-based direct imaging missions

    Get PDF
    Community White Paper: submitted to the National Academy of Sciences Exoplanet Science StrategyThis white paper discusses the diversity of exoplanets that could be detected by future observations, so that comparative exoplanetology can be performed in the upcoming era of large space-based flagship missions. The primary focus will be on characterizing Earth-like worlds around Sun-like stars. However, we will also be able to characterize companion planets in the system simultaneously. This will not only provide a contextual picture with regards to our Solar system, but also presents a unique opportunity to observe size dependent planetary atmospheres at different orbital distances. We propose a preliminary scheme based on chemical behavior of gases and condensates in a planet's atmosphere that classifies them with respect to planetary radius and incident stellar flux

    Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.

    Get PDF
    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications
    • 

    corecore