23 research outputs found

    Three-dimensional computed tomography from interferometric measurements within a narrow cone of views

    Get PDF
    A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three-dimensional computer tomography in internal fluid dynamics

    Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory

    Get PDF
    A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe

    The Demonstration of a Light Extinction Tomography System at the NASA Glenn Research Center's Icing Research Tunnel

    Get PDF
    A prototype light extinction tomography system has been developed for acquiring real-time in-situ icing cloud uniformity and density measurements in the NASA Glenn Research Center's Icing Research Tunnel (IRT). These measurements are currently obtained through periodic manual calibrations of the IRT. These calibrations are time consuming and assume that cloud uniformity and density does not greatly vary between the periodic calibrations. It is envisioned that the new light extinction tomography system will provide the means to make these measurements in-situ in real-time and minimize the need for these manual calibrations. This new system uses the principle of light extinction tomography to measure the spray density and distribution in the test section. The prototype system was installed and successfully demonstrated in the Icing Research Tunnel in early 2018. Data sets were acquired for several standard spray and simulated fault conditions to assess system capability and sensitivity. This paper will describe the prototype light extinction system, the theory behind it, and the results of the demonstration test that was conducted in the IRT

    The Demonstration of a Light Extinction Tomography System at the NASA Glenn Research Center's Icing Research Tunnel

    Get PDF
    A prototype light extinction tomography system has been developed for acquiring real-time in-situ icing cloud uniformity and density measurements in the NASA Glenn Research Center's Icing Research Tunnel (IRT). These measurements are currently obtained through periodic manual calibrations of the IRT. These calibrations are time consuming and assume that cloud uniformity and density does not greatly vary between the periodic calibrations. It is envisioned that the new light extinction tomography system will provide the means to make these measurements in-situ in real-time and minimize the need for these manual calibrations. This new system uses the principle of light extinction tomography to measure the spray density and distribution in the test section. The prototype system was installed and successfully demonstrated in the Icing Research Tunnel in early 2018. Data sets were acquired for several standard spray and simulated fault conditions to assess system capability and sensitivity. This paper will describe the prototype light extinction system, the theory behind it, and the results of the demonstration test that was conducted in the IRT

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore