1,727 research outputs found
Interplane and intraplane heat transport in quasi two-dimensional nodal superconductors
We analyze the behavior of the thermal conductivity in quasi-two dimensional
superconductors with line nodes. Motivated by measurements of the anisotropy
between the interplane and intraplane thermal transport in CeIrIn_5 we show
that a simple model of the open Fermi surface with vertical line nodes is
insufficient to describe the data. We propose two possible extensions of the
model taking into account a) additional modulation of the gap along the axial
direction of the open Fermi surface; and b) dependence of the interplane
tunneling on the direction of the in-plane momentum. We discuss the temperature
dependence of the thermal conductivity anisotropy and its low T limit in these
two models and compare the results with a model with a horizontal line of nodes
(``hybrid gap''). We discuss possible relevance of each model for the symmetry
of the order parameter in CeIrIn_5, and suggest further experiments aimed at
clarifying the shape of the superconducting gap.Comment: 14pages, 12 figure
Thermal conductivity through the quantum critical point in YbRh2Si2 at very low temperature
The thermal conductivity of YbRh2Si2 has been measured down to very low
temperatures under field in the basal plane. An additional channel for heat
transport appears below 30 mK, both in the antiferromagnetic and paramagnetic
states, respectively below and above the critical field suppressing the
magnetic order. This excludes antiferromagnetic magnons as the origin of this
additional contribution to thermal conductivity. Moreover, this low temperature
contribution prevails a definite conclusion on the validity or violation of the
Wiedemann-Franz law at the field-induced quantum critical point. At high
temperature in the paramagnetic state, the thermal conductivity is sensitive to
ferromagnetic fluctuations, previously observed by NMR or neutron scattering
and required for the occurrence of the sharp electronic spin resonance
fracture.Comment: 11 pages + Supplementary Material
Thermal conductivity in B- and C- phase of UPt_3
Although the superconductivity in UPt_3 is one of the most well studied,
there are still lingering questions about the nodal directions in the B and C
phase in the presence of a magnetic field. Limiting ourselves to the low
temperature regime (T<<Delta(0)), we study the magnetothermal conductivity with
in semiclassical approximation using Volovik's approach. The angular dependence
of the magnetothermal conductivity for an arbitrary field direction should
clarify the nodal structure in UPt_3.Comment: 4 pages, 5 figure
Dynamical Supersymmetry Breaking without Messenger Gauge Interactions
We investigate low-energy models of supersymmetry (SUSY) breaking by means of
vector-like gauge theories for dynamical SUSY breaking. It is not necessary to
introduce messenger gauge interactions utilized so far to mediate the SUSY
breaking to the standard-model sector, which reduces complication in the model
building. We also consider various other ways of SUSY-breaking transmission.Comment: 10 pages, LaTeX, 1 Postscript figur
Anisotropy of in-plane magnetization due to nodal gap structure in the vortex state
We examine the interplay between anisotropy of the in-plane magnetization and
the nodal gap structure on the basis of the approximate analytic solution in
the quasiclassical formalism. We show that a four-fold oscillation appears in
the magnetization, and its amplitude changes sign at an intermediate field. The
high-field oscillation originates from the anisotropy of the upper critical
field, while the low-field behavior can be understood by the thermally
activated quasiparticles near nodes depending on the applied field angles. The
temperature dependence of the magnetization also shows a similar sign change.
The anisotropy of the magnetization offers a possible measurement to identify
the gap structure directly for a wide class of type II superconductors.Comment: 4 pages, 4 figure
Thermoelectric response near a quantum critical point: the case of CeCoIn5
We present a study of thermoelectric coefficients in CeCoIn_5 down to 0.1 K
and up to 16 T in order to probe the thermoelectric signatures of quantum
criticality. In the vicinity of the field-induced quantum critical point, the
Nernst coefficient nu exhibits a dramatic enhancement without saturation down
to lowest measured temperature. The dimensionless ratio of Seebeck coefficient
to electronic specific heat shows a minimum at a temperature close to threshold
of the quasiparticle formation. Close to T_c(H), in the vortex-liquid state,
the Nernst coefficient behaves anomalously in puzzling contrast with other
superconductors and standard vortex dynamics.Comment: 4 pages, 4 figures,final published versio
Field-angle resolved specific heat and thermal conductivity in the vortex phase of UPd_2Al_3
The field-angle dependent specific heat and thermal conductivity in the
vortex phase of UPd_2Al_3 is studied using the Doppler shift approximation for
the low energy quasiparticle excitations. We first give a concise presentation
of the calculation procedure of magnetothermal properties with vortex and FS
averages performed numerically. The comparison of calculated field-angle
oscillations and the experimental results obtained previously leads to a strong
reduction of the possible SC candidate states in UPd_2Al_3. The possible SC gap
functions have node lines in hexagonal symmetry planes containing either the
zone center or the AF zone boundary along c. Node lines in non-symmetry planes
can be excluded. We also calculate the field and temperature dependence of
field-angular oscillation amplitudes. We show that the observed nonmonotonic
field dependence and sign reversal of the oscillation amplitude is due to small
deviations from unitary scattering.Comment: 16 pages, 8 figure
Nonlinear response and scaling law in the vortex state of d-wave superconductors
We study the field dependence of the quasi-particle density of states, the
thermodynamics and the transport properties in the vortex state of d-wave
superconductors when a magnetic field is applied perpendicular to the
conducting plane, specially for the low field and the low temperature compared
to the upper critical field and transition temperature, respectively, and . Both the superfluid density and the spin
susceptibility exhibit the characteristic -field dependence, while
the nuclear spin lattice relaxation rate T and the thermal
conductivity are linear in field . With increasing temperature, these
quantities exhibit the scaling behavior in . The present theory
applies to 2D -wave superconductor as well; a possible candidate of the
superconductivity in SrRuO.Comment: 11 pages, 4 figure
Spectral properties and geology of bright and dark material on dwarf planet Ceres
Variations and spatial distributions of bright and dark material on dwarf
planet Ceres play a key role in understanding the processes that have led to
its present surface composition. We define limits for bright and dark material
in order to distinguish them consistently, based on the reflectance of the
average surface using Dawn Framing Camera data. A systematic classification of
four types of bright material is presented based on their spectral properties,
composition, spatial distribution, and association with specific
geomorphological features. We found obvious correlations of reflectance with
spectral shape (slopes) and age; however, this is not unique throughout the
bright spots. Although impact features show generally more extreme reflectance
variations, several areas can only be understood in terms of inhomogeneous
distribution of composition as inferred from Dawn Visible and Infrared
Spectrometer data. Additional material with anomalous composition and spectral
properties are rare. The identification of the composition and origin of the
dark, particularly the darkest material, remains to be explored. The spectral
properties and the morphology of the dark sites suggest an endogenic origin,
but it is not clear whether they are more or less primitive surficial exposures
or excavated subsurface but localized material. The reflectance, spectral
properties, inferred composition, and geologic context collectively suggest
that the bright and dark material tends to gradually change toward the average
surface over time. This could be because of multiple processes, i.e., impact
gardening/space weathering, and lateral mixing, including thermal and aqueous
alteration, accompanied by changes in composition and physical properties such
as grain size, surface temperature, and porosity (compaction).Comment: Meteoritics and Planetary Science; Dawn at Ceres special issu
- …
