26 research outputs found

    I Sympozjum Historyków Państwa i Prawa Polskiego w Krakowie (16 stycznia 2012)

    Get PDF
    I Sympozjum Historyków Państwa i Prawa Polskiego w Krakowie (16 stycznia 2012

    Sympozjum Historyków Państwa i Prawa Polskiego w Krakowie

    Get PDF
    Sympozjum Historyków Państwa i Prawa Polskiego w Krakowi

    A genistein derivative, ITB-301, induces microtubule depolymerization and mitotic arrest in multidrug-resistant ovarian cancer

    Get PDF
    PURPOSE: To investigate the mechanistic basis of the anti-tumor effect of the compound ITB-301. METHODS: Chemical modifications of genistein have been introduced to improve its solubility and efficacy. The anti-tumor effects were tested in ovarian cancer cells using proliferation assays, cell cycle analysis, immunofluorescence, and microscopy. RESULTS: In this work, we show that a unique glycoside of genistein, ITB-301, inhibits the proliferation of SKOv3 ovarian cancer cells. We found that the 50% growth inhibitory concentration of ITB-301 in SKOv3 cells was 0.5 μM. Similar results were obtained in breast cancer, ovarian cancer, and acute myelogenous leukemia cell lines. ITB-301 induced significant time- and dose-dependent microtubule depolymerization. This depolymerization resulted in mitotic arrest and inhibited proliferation in all ovarian cancer cell lines examined including SKOv3, ES2, HeyA8, and HeyA8-MDR cells. The cytotoxic effect of ITB-301 was dependent on its induction of mitotic arrest as siRNA-mediated depletion of BUBR1 significantly reduced the cytotoxic effects of ITB-301, even at a concentration of 10 μM. Importantly, efflux-mediated drug resistance did not alter the cytotoxic effect of ITB-301 in two independent cancer cell models of drug resistance. CONCLUSION: These results identify ITB-301 as a novel anti-tubulin agent that could be used in cancers that are multidrug resistant. We propose a structural model for the binding of ITB-301 to α- and β-tubulin dimers on the basis of molecular docking simulations. This model provides a rationale for future work aimed at designing of more potent analogs

    Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms

    Get PDF
    Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44+ cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many “stemness” genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44+ tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms

    Drug Conjugates for Targeting Eph Receptors in Glioblastoma

    No full text
    Glioblastoma (GBM) is a complex and heterogeneous tumor that warrants a comprehensive therapeutic approach for treatment. Tumor-associated antigens offer an opportunity to selectively target various components of the GBM microenvironment while sparing the normal cells within the central nervous system. In this study, we conjugated a multivalent vector protein, QUAD 3.0, that can target four receptors: EphA3, EphA2, EphB2, and also IL-13RA2, spanning virtually 100% of the GBM microenvironment, to doxorubicin derivatives. The conjugates effectively bound to all four receptors, although to varying degrees, and delivered cytotoxic loads to both established and patient-derived GBM cell lines, with IC50 values in the low nM range. The conjugates were also non-toxic to animals. We anticipate that the QUAD 3.0 Dox conjugates will be further used in preclinical models and possibly clinics in the foreseeable future

    Bromine Atom Interactions in Biologically Active Acrylamide Derivatives

    No full text
    Halogen bond interactions, C–Br···NC–, have been found in a crystal structure of an important drug compound WP1066. In order to characterize the nature of these interactions, experimental charge density distribution has been accomplished for a single crystal of WP1066. The energetic study of the halogen bond proved that this is one of the weakest interactions in the crystal structure and in energetic terms is close to the energy of the Br···H hydrogen bond type close contacts. Experimental charge density studies revealed a charge redistribution between molecules connected by halogen and hydrogen bonds enhancing electrostatic interaction energy. Using structural, charge density, and computational studies for WP1066 and two analogs, WP1130 and WP1220, we showed determining factors for the formation of the crystal structure, i.e. the presence of a bulky side chain next to the donor and acceptor of the hydrogen bond resulting in a change in conformation and electrostatic potential of molecules
    corecore