17 research outputs found

    Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star

    Get PDF
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M ⊙ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55−47+127Gpc−3yr−1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Exceptional Electrocatalytic Oxygen Evolution via Tunable Charge Transfer Interactions in La[subscript 0.5]Sr[subscript 1.5]Ni[subscript 1−x]FexO[subscript 4±δ] Ruddlesden-Popper Oxides

    No full text
    The electrolysis of water is of global importance to store renewable energy and the methodical design of next-generation oxygen evolution catalysts requires a greater understanding of the structural and electronic contributions that give rise to increased activities. Herein, we report a series of Ruddlesden–Popper La[subscript 0.5]Sr[subscript 1.5]Ni[subscript 1−x]FexO[subscript 4±δ] oxides that promote charge transfer via cross-gap hybridization to enhance electrocatalytic water splitting. Using selective substitution of lanthanum with strontium and nickel with iron to tune the extent to which transition metal and oxygen valence bands hybridize, we demonstrate remarkable catalytic activity of 10 mA cm⁻² at a 360 mV overpotential and mass activity of 1930 mA mg⁻¹[subscript ox] at 1.63 V via a mechanism that utilizes lattice oxygen. This work demonstrates that Ruddlesden–Popper materials can be utilized as active catalysts for oxygen evolution through rational design of structural and electronic configurations that are unattainable in many other crystalline metal oxide phases.Robert A. Welch Foundation (Grant F-1529)Robert A. Welch Foundation (Grant F-1319

    India’s First Robotic Eye for Time-domain Astrophysics: The GROWTH-India Telescope

    Get PDF
    We present the design and performance of the GROWTH-India telescope, a 0.7 m robotic telescope dedicated to time-domain astronomy. The telescope is equipped with a 4k back-illuminated camera that gives a 0.°82 field of view and a sensitivity of m g′ ∼ 20.5 in 5 minute exposures. Custom software handles observatory operations: attaining high on-sky observing efficiencies (≳80%) and allowing rapid response to targets of opportunity. The data processing pipelines are capable of performing point-spread function photometry as well as image subtraction for transient searches. We also present an overview of the GROWTH-India telescope’s contributions to the studies of gamma-ray bursts, the electromagnetic counterparts to gravitational wave sources, supernovae, novae, and solar system objects

    India's First Robotic Eye for Time-domain Astrophysics: The GROWTH-India Telescope

    No full text
    We present the design and performance of the GROWTH-India telescope, a 0.7 m robotic telescope dedicated to time-domain astronomy. The telescope is equipped with a 4k back-illuminated camera that gives a 0.degrees 82 field of view and a sensitivity of m (g ') similar to 20.5 in 5 minute exposures. Custom software handles observatory operations: attaining high on-sky observing efficiencies (greater than or similar to 80%) and allowing rapid response to targets of opportunity. The data processing pipelines are capable of performing point-spread function photometry as well as image subtraction for transient searches. We also present an overview of the GROWTH-India telescope's contributions to the studies of gamma-ray bursts, the electromagnetic counterparts to gravitational wave sources, supernovae, novae, and solar system objects

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    No full text
    International audienceAmong the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)BLU(1)_{B-L} gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)BLU(1)_{B-L} gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of Gravitational Waves from the Coalescence of a 2.54.5 M2.5-4.5~M_\odot Compact Object and a Neutron Star

    No full text
    International audienceWe report the observation of a coalescing compact binary with component masses 2.54.5 M2.5-4.5~M_\odot and 1.22.0 M1.2-2.0~M_\odot (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than 5 M5~M_\odot at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We estimate a merger rate density of 5547+127 Gpc3yr155^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1} for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    No full text
    International audienceAmong the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)BLU(1)_{B-L} gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)BLU(1)_{B-L} gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    No full text
    International audienceAmong the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)BLU(1)_{B-L} gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)BLU(1)_{B-L} gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore