71 research outputs found

    Effect of rural-urban migration on household food security in Umuahia South Local Government Area of Abia State, Nigeria

    Get PDF
    This study analyzed the effects of rural-urban migration on household food security in Umuahia South Local Government Area of Abia State, Nigeria. Specifically the study examined the socio-economic characteristics of the migrants’ household; identified the causes of rural-urban migration in the study area and determined the food security status of the respondents in the study area. A total of 120 respondents were randomly selected across 10 villages in the study area. A structured questionnaire was used to collect primarydata. Data collected were analyzed using descriptive statistics and ordinary least square multiple regression model. The results of the descriptive statistics showed that the respondents have a mean age of 49 years and majority of the migrants’ household were educated and married, with male dominated household constituting 79.16 % and mean household size of 5 persons. It also showed that most (81.66%) of the respondents were engaged in farming occupation with mean income of ₩50,737.The three main causes of rural-urban migration in the study area were: search for job, better education and join spouse. The results of the food security status showed that 66.67% of the respondents have food security index of less than 1. The results of the regression analysis showed that age, household size and food from friends were the major determinants of food security in the study area. The study thus recommends that government through its relevant agencies should encourage sustainable food production through subsidizing farm inputs and giving improved seedlings to farmers to boost their productivity and achieve the sustainable development goal of zero hunger by 2030.Keywords: rural-urban migration, household and food securit

    Probing the mechanism of simultaneous bioenergy production and biodegradation process of Congo red in microbial fuel cells

    Get PDF
    BACKGROUND: Many approaches have been employed to increase the understanding and consequently the performance of Microbial Fuel Cells to obtain simultaneous power production and biodegradation. This study uses recombinant Escherichia coli K-12 with MtrA, MtrC and MtrCAB inserts previously prepared using synthetic biology to evaluate the involvement of each of these genes in bioenergy production and biodegradation of Congo red using a double chamber microbial fuel cell. RESULTS: MtrC was the key gene required for energy production corresponding to an average voltage of 360 mV (external resistance 1 K&) and power density of 59 mW/m2, while E. coli with MtrCAB insert showed the highest decolourisation which reached 80% in 36 h under microbial fuel cells conditions. Coloumbic efficiency was 1.2% for E.coli with MtrCAB compared to 2.5% and 2.3% for MtrC and MtrA inserts, respectively. Riboflavin seems to be involved in the electron transferring, its concentration was highest for E.coli with MtrA insert despite its poor performance in both bioenergy production and dye degradation. CONCLUSION: This study suggests that electrons are mutually exclusive between electricity production, dye degradation and other cellular activities. This study helps us improve our understanding of the dual bioenergy/decolourisation process taking place in MFCs in order to maximize the outcome

    Benchmarking et selection des technologies de pyrolyse et de gazéification adaptées à la valorisation des CSR et du Bois-B sous forme du gaz

    No full text
    For a methanation reaction to occur, it is important that the synthesis gas has a minimum H2 / CO ratio of 3 or H2 / CO2 of 4. The higher these ratios, the greater the conversion of carbon oxides to methane. It is also important that the synthesis gas does not contain nitrogen for the reason that this reduces the partial pressure of the main reactive species in the produced syngas. However, due to the common practice of using air as an oxidant in gasification processes, the synthesis gas produced contains about 50% nitrogen. The purification of this gas has significant financial implications. Another important consideration is that the gas that will be in the methanation process must be tar-free. The low particle load of the syngas is also considered to be part of the criteria for measuring the quality of the syngas produced. However, a major constraint in this project is the issues linked to the thermochemical upgrading of SRFs and Bois-B.In this report, therefore, gasification and pyrolysis processes as well as pre-treatment techniques for CSR and Bois-B in order to be able to transform them into high quality syngas has been proposed. Knowing that this syngas must be transformed into biomethane by biological methanation, this report is divided into two parts: parite A - "Benchmarking of Existing Pyrolysis and Gasification Technologies"; and part B ‘Production of Biomethane from Syngas issued from SRFs and Bois-B’.Pour qu’une rĂ©action de mĂ©thanation se produise, il est important que le gaz de synthĂšse ait un rapport minimum H2 / CO de 3 ou H2 / CO2 de 4. Plus ces rapports sont Ă©levĂ©s, plus la conversion des oxydes de carbone en mĂ©thane est facile. Il est Ă©galement important que le gaz de synthĂšse ne contienne pas d'azote pour la raison que ceci rĂ©duire la pression partielle des principales espĂšces rĂ©actives dans le syngaz produit. Mais, en raison de la pratique courante d'utilisation de l'air comme oxydant dans les procĂ©dĂ©s de gazĂ©ification, le gaz de synthĂšse produit contient environ 50% d'azote. La purification de ce gaz a des implications financiĂšres importantes. Une autre considĂ©ration importante est que le gaz qui sera dans le processus de mĂ©thanation doit ĂȘtre exempt de goudron. La faible charge de particules du gaz de synthĂšse est Ă©galement considĂ©rĂ©e comme faisant partie des critĂšres de mesure de la qualitĂ© du gaz de synthĂšse produit. Cependant, une contrainte majeure dans ce projet est les enjeux liĂ©s Ă  la valorisation thermochimique des CSR et du Bois-B.Dans ce rapport, donc, les technologies diffĂ©rent de gazĂ©ification et pyrolyse ainsi que les techniques de prĂ©traitement de CSR et du Bois-B afin de les valoriser sous forme de gaz sont proposĂ©s. Sachant que ce syngaz doit ĂȘtre transformĂ© en biomĂ©thane par mĂ©thanation biologique, ce rapport est devisĂ© en deux partie: parite A - ‘Benchmarking des Technologies Existantes de Pyrolyse et de GazĂ©ification’ ; et partie B ‘La Production de BiomĂ©thane Ă  partir du Syngaz issu des CSR et du Bois-B

    Benchmarking et selection des technologies de pyrolyse et de gazéification adaptées à la valorisation des CSR et du Bois-B sous forme du gaz

    No full text
    For a methanation reaction to occur, it is important that the synthesis gas has a minimum H2 / CO ratio of 3 or H2 / CO2 of 4. The higher these ratios, the greater the conversion of carbon oxides to methane. It is also important that the synthesis gas does not contain nitrogen for the reason that this reduces the partial pressure of the main reactive species in the produced syngas. However, due to the common practice of using air as an oxidant in gasification processes, the synthesis gas produced contains about 50% nitrogen. The purification of this gas has significant financial implications. Another important consideration is that the gas that will be in the methanation process must be tar-free. The low particle load of the syngas is also considered to be part of the criteria for measuring the quality of the syngas produced. However, a major constraint in this project is the issues linked to the thermochemical upgrading of SRFs and Bois-B.In this report, therefore, gasification and pyrolysis processes as well as pre-treatment techniques for CSR and Bois-B in order to be able to transform them into high quality syngas has been proposed. Knowing that this syngas must be transformed into biomethane by biological methanation, this report is divided into two parts: parite A - "Benchmarking of Existing Pyrolysis and Gasification Technologies"; and part B ‘Production of Biomethane from Syngas issued from SRFs and Bois-B’.Pour qu’une rĂ©action de mĂ©thanation se produise, il est important que le gaz de synthĂšse ait un rapport minimum H2 / CO de 3 ou H2 / CO2 de 4. Plus ces rapports sont Ă©levĂ©s, plus la conversion des oxydes de carbone en mĂ©thane est facile. Il est Ă©galement important que le gaz de synthĂšse ne contienne pas d'azote pour la raison que ceci rĂ©duire la pression partielle des principales espĂšces rĂ©actives dans le syngaz produit. Mais, en raison de la pratique courante d'utilisation de l'air comme oxydant dans les procĂ©dĂ©s de gazĂ©ification, le gaz de synthĂšse produit contient environ 50% d'azote. La purification de ce gaz a des implications financiĂšres importantes. Une autre considĂ©ration importante est que le gaz qui sera dans le processus de mĂ©thanation doit ĂȘtre exempt de goudron. La faible charge de particules du gaz de synthĂšse est Ă©galement considĂ©rĂ©e comme faisant partie des critĂšres de mesure de la qualitĂ© du gaz de synthĂšse produit. Cependant, une contrainte majeure dans ce projet est les enjeux liĂ©s Ă  la valorisation thermochimique des CSR et du Bois-B.Dans ce rapport, donc, les technologies diffĂ©rent de gazĂ©ification et pyrolyse ainsi que les techniques de prĂ©traitement de CSR et du Bois-B afin de les valoriser sous forme de gaz sont proposĂ©s. Sachant que ce syngaz doit ĂȘtre transformĂ© en biomĂ©thane par mĂ©thanation biologique, ce rapport est devisĂ© en deux partie: parite A - ‘Benchmarking des Technologies Existantes de Pyrolyse et de GazĂ©ification’ ; et partie B ‘La Production de BiomĂ©thane Ă  partir du Syngaz issu des CSR et du Bois-B
    • 

    corecore