1,942 research outputs found

    BaH molecular spectroscopy with relevance to laser cooling

    Get PDF
    We describe a simple experimental apparatus for laser ablation of barium monohydride (BaH) molecules and the study of their rovibrational spectra that are relevant to direct laser cooling. We present a detailed analysis of the properties of ablation plumes that can improve the understanding of surface ablation and deposition technologies. A range of absorption spectroscopy and collisional thermalization regimes has been studied. We directly measured the Franck-Condon factor of the B2Σ+(v=0)X2Σ+(v"=1)\mathrm{B}^2\Sigma^+(v'=0)\leftarrow\mathrm{X}^2\Sigma^+(v"=1) transition. Prospects for production of a high luminosity cryogenic BaH beam are outlined. This molecule is a promising candidate for laser cooling and ultracold fragmentation, both of which are precursors to novel experiments in many-body physics and precision measurement.Comment: 11 pages, 10 figure

    Precise study of asymptotic physics with subradiant ultracold molecules

    Get PDF
    Weakly bound molecules have physical properties without atomic analogues, even as the bond length approaches dissociation. In particular, the internal symmetries of homonuclear diatomic molecules result in formation of two-body superradiant and subradiant excited states. While superradiance has been demonstrated in a variety of systems, subradiance is more elusive due to the inherently weak interaction with the environment. Here we characterize the properties of deeply subradiant molecular states with intrinsic quality factors exceeding 101310^{13} via precise optical spectroscopy with the longest molecule-light coherent interaction times to date. We find that two competing effects limit the lifetimes of the subradiant molecules, with different asymptotic behaviors. The first is radiative decay via weak magnetic-dipole and electric-quadrupole interactions. We prove that its rate increases quadratically with the bond length, confirming quantum mechanical predictions. The second is nonradiative decay through weak gyroscopic predissociation, with a rate proportional to the vibrational mode spacing and sensitive to short-range physics. This work bridges the gap between atomic and molecular metrology based on lattice-clock techniques, yielding new understanding of long-range interatomic interactions and placing ultracold molecules at the forefront of precision measurements.Comment: 12 pages, 6 figure

    High-precision spectroscopy of ultracold molecules in an optical lattice

    Get PDF
    The study of ultracold molecules tightly trapped in an optical lattice can expand the frontier of precision measurement and spectroscopy, and provide a deeper insight into molecular and fundamental physics. Here we create, probe, and image microkelvin 88^{88}Sr2_2 molecules in a lattice, and demonstrate precise measurements of molecular parameters as well as coherent control of molecular quantum states using optical fields. We discuss the sensitivity of the system to dimensional effects, a new bound-to-continuum spectroscopy technique for highly accurate binding energy measurements, and prospects for new physics with this rich experimental system.Comment: 12 pages, 4 figure

    Small-sized dichroic atomic vapor laser lock

    Get PDF
    Two, lightweight diode laser frequency stabilization systems designed for experiments in the field are described. A significant reduction in size and weight in both models supports the further miniaturization of measurement devices in the field. Similar to a previous design, magnetic-field lines are contained within a magnetic shield enclosing permanent magnets and a Rb cell, so that these DAVLL systems may be used for magnetically sensitive instruments. The Mini-DAVLL system (49 mm long) uses a vapor cell (20 mm long), and does not require cell heaters. An even smaller Micro-DAVLL system (9mm long) uses a micro-fabricated cell (3 mm square), and requires heaters. These new systems show no degradation in performance with regard to previous designs, while considerably reducing dimensions.Comment: 13 pages, 11 figures, published versio

    Knots and Random Walks in Vibrated Granular Chains

    Full text link
    We study experimentally statistical properties of the opening times of knots in vertically vibrated granular chains. Our measurements are in good qualitative and quantitative agreement with a theoretical model involving three random walks interacting via hard core exclusion in one spatial dimension. In particular, the knot survival probability follows a universal scaling function which is independent of the chain length, with a corresponding diffusive characteristic time scale. Both the large-exit-time and the small-exit-time tails of the distribution are suppressed exponentially, and the corresponding decay coefficients are in excellent agreement with the theoretical values.Comment: 4 pages, 5 figure

    Unrestricted Hartree-Fock Analysis of Sr3x_{3-x}Cax_xRu2_2O7_7

    Full text link
    We investigated the electronic and magnetic structure of Sr3x_{3-x}Cax_xRu2_2O7_7 (0x30 \leq x \leq 3) on the basis of the double-layered three-dimensional multiband Hubbard model with spin-orbit interaction. In our model, lattice distortion is implemented as the modulation of transfer integrals or a crystal field. The most stable states are estimated within the unrestricted Hartree-Fock approximation, in which the colinear spin configurations with five different spin-quantization axes are adopted as candidates. The obtained spin structures for some particular lattice distortions are consistent with the neutron diffraction results for Ca3_3Ru2_2O7_7. Also, some magnetic phase transitions can occur due to changes in lattice distortion. These results facilitate the comprehensive understanding of the phase diagram of Sr3x_{3-x}Cax_xRu2_2O7_7.Comment: 16 pages, 7 figure

    Generalized second Bargmann transforms associated with the hyperbolic Landau levels on the Poincar\'e disk

    Full text link
    We deal with a family of generalized coherent states associated to the hyperbolic Landau levels of the Schr\"odinger operator with uniform magnetic field on the Poincar\'e disk. Their associated coherent state transforms constitute a class of generalized second Bargmann transforms.Comment: 7 page

    Lyman Alpha Emitters at Redshift 5.7 in the COSMOS Field

    Get PDF
    We present results from a narrow-band optical survey of a contiguous area of 1.95 deg^2, covered by the Cosmic Evolution Survey (COSMOS). Both optical narrow-band (lambda_c = 8150 AA and Delta_lambda = 120 AA) and broad-band (B, V, g', r', i', and z') imaging observations were performed with the Subaru prime-focus camera, Suprime-Cam on the Subaru Telescope. We provide the largest contiguous narrow-band survey, targetting Ly alpha emitters (LAEs) at z~5.7. We find a total of 119 LAE candidates at z~5.7. Over the wide-area covered by this survey, we find no strong evidence for large scale clustering of LAEs. We estimate a star formation rate (SFR) density of ~7*10^-4 M_sun yr^-1 Mpc^-3 for LAEs at z~5.7, and compare it with previous measurements.Comment: 26 pages, 19 figures. to appear in the ApJ Supplement COSMOS Special Issu
    corecore