BaH molecular spectroscopy with relevance to laser cooling

Abstract

We describe a simple experimental apparatus for laser ablation of barium monohydride (BaH) molecules and the study of their rovibrational spectra that are relevant to direct laser cooling. We present a detailed analysis of the properties of ablation plumes that can improve the understanding of surface ablation and deposition technologies. A range of absorption spectroscopy and collisional thermalization regimes has been studied. We directly measured the Franck-Condon factor of the B2Σ+(v=0)X2Σ+(v"=1)\mathrm{B}^2\Sigma^+(v'=0)\leftarrow\mathrm{X}^2\Sigma^+(v"=1) transition. Prospects for production of a high luminosity cryogenic BaH beam are outlined. This molecule is a promising candidate for laser cooling and ultracold fragmentation, both of which are precursors to novel experiments in many-body physics and precision measurement.Comment: 11 pages, 10 figure

    Similar works