28 research outputs found

    Evolutionary dynamics of imatinib-treated leukemic cells by stochastic approach

    Full text link
    The evolutionary dynamics of a system of cancerous cells in a model of chronic myeloid leukemia (CML) is investigated by a statistical approach. Cancer progression is explored by applying a Monte Carlo method to simulate the stochastic behavior of cell reproduction and death in a population of blood cells which can experience genetic mutations. In CML front line therapy is represented by the tyrosine kinase inhibitor imatinib which strongly affects the reproduction of leukemic cells only. In this work, we analyze the effects of a targeted therapy on the evolutionary dynamics of normal, first-mutant and cancerous cell populations. Several scenarios of the evolutionary dynamics of imatinib-treated leukemic cells are described as a consequence of the efficacy of the different modeled therapies. We show how the patient response to the therapy changes when an high value of the mutation rate from healthy to cancerous cells is present. Our results are in agreement with clinical observations. Unfortunately, development of resistance to imatinib is observed in a proportion of patients, whose blood cells are characterized by an increasing number of genetic alterations. We find that the occurrence of resistance to the therapy can be related to a progressive increase of deleterious mutations.Comment: Submitted to Central European Journal of Physic

    An exactly solvable, spatial model of mutation accumulation in cancer

    Get PDF
    One of the hallmarks of cancer is the accumulation of driver mutations which increase the net reproductive rate of cancer cells and allow them to spread. This process has been studied in mathematical models of well mixed populations, and in computer simulations of three-dimensional spatial models. But the computational complexity of these more realistic, spatial models makes it difficult to simulate realistically large and clinically detectable solid tumours. Here we describe an exactly solvable mathematical model of a tumour featuring replication, mutation and local migration of cancer cells. The model predicts a quasi-exponential growth of large tumours, even if different fragments of the tumour grow sub-exponentially due to nutrient and space limitations. The model reproduces clinically observed tumour growth times using biologically plausible rates for cell birth, death, and migration rates. We also show that the expected number of accumulated driver mutations increases exponentially in time if the average fitness gain per driver is constant, and that it reaches a plateau if the gains decrease over time. We discuss the realism of the underlying assumptions and possible extensions of the model

    Cancer recurrence times from a branching process model

    Get PDF
    As cancer advances, cells often spread from the primary tumor to other parts of the body and form metastases. This is the main cause of cancer related mortality. Here we investigate a conceptually simple model of metastasis formation where metastatic lesions are initiated at a rate which depends on the size of the primary tumor. The evolution of each metastasis is described as an independent branching process. We assume that the primary tumor is resected at a given size and study the earliest time at which any metastasis reaches a minimal detectable size. The parameters of our model are estimated independently for breast, colorectal, headneck, lung and prostate cancers. We use these estimates to compare predictions from our model with values reported in clinical literature. For some cancer types, we find a remarkably wide range of resection sizes such that metastases are very likely to be present, but none of them are detectable. Our model predicts that only very early resections can prevent recurrence, and that small delays in the time of surgery can significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table

    Dynamics of chronic myeloid leukaemia

    No full text
    © 2005 Nature Publishing GroupThe clinical success of the ABL tyrosine kinase inhibitor imatinib in chronic myeloid leukaemia (CML) serves as a model for molecularly targeted therapy of cancer, but at least two critical questions remain. Can imatinib eradicate leukaemic stem cells? What are the dynamics of relapse due to imatinib resistance, which is caused by mutations in the ABL kinase domain? The precise understanding of how imatinib exerts its therapeutic effect in CML and the ability to measure disease burden by quantitative polymerase chain reaction provide an opportunity to develop a mathematical approach. We find that a four-compartment model, based on the known biology of haematopoietic differentiation, can explain the kinetics of the molecular response to imatinib in a 169-patient data set. Successful therapy leads to a biphasic exponential decline of leukaemic cells. The first slope of 0.05 per day represents the turnover rate of differentiated leukaemic cells, while the second slope of 0.008 per day represents the turnover rate of leukaemic progenitors. The model suggests that imatinib is a potent inhibitor of the production of differentiated leukaemic cells, but does not deplete leukaemic stem cells. We calculate the probability of developing imatinib resistance mutations and estimate the time until detection of resistance. Our model provides the first quantitative insights into the in vivo kinetics of a human cancer.Franziska Michor, Timothy P. Hughes, Yoh Iwasa, Susan Branford, Neil P. Shah, Charles L. Sawyers & Martin A. Nowa

    The linear process of somatic evolution

    No full text
    Cancer is the consequence of an unwanted evolutionary process. Cells receive mutations that alter their phenotype. Especially dangerous are those mutations that increase the net reproductive rate of cells, thereby leading to neoplasia and later to cancer. The standard models of evolutionary dynamics consider well mixed populations of individuals in symmetric positions. Here we introduce a spatially explicit, asymmetric stochastic process that captures the essential architecture of evolutionary dynamics operating within tissues of multicellular organisms. The “linear process” has the property of canceling out selective differences among cells yet retaining the protective function of apoptosis. This design can slow down the rate of somatic evolution dramatically and therefore delay the onset of cancer

    Evolutionary dynamics of tumor suppressor gene inactivation

    No full text
    Tumor suppressor genes (TSGs) are important gatekeepers that protect against somatic evolution of cancer. Losing both alleles of a TSG in a single cell represents a step toward cancer. We study how the kinetics of TSG inactivation depends on the population size of cells and the mutation rates for the first and second hit. We calculate the probability as function of time that at least one cell has been generated with two inactivated alleles of a TSG. We find three different kinetic laws: in small, intermediate, and large populations, it takes, respectively, two, one, and zero rate-limiting steps to inactivate a TSG. We also study the effect of chromosomal and other genetic instabilities. Small lesions without genetic instability can take a very long time to inactivate the next TSG, whereas the same lesions with genetic instability pose a much greater risk for cancer progression
    corecore