434 research outputs found

    Mappings of least Dirichlet energy and their Hopf differentials

    Full text link
    The paper is concerned with mappings between planar domains having least Dirichlet energy. The existence and uniqueness (up to a conformal change of variables in the domain) of the energy-minimal mappings is established within the class Hˉ2(X,Y)\bar{\mathscr H}_2(X, Y) of strong limits of homeomorphisms in the Sobolev space W1,2(X,Y)W^{1,2}(X, Y), a result of considerable interest in the mathematical models of Nonlinear Elasticity. The inner variation leads to the Hopf differential hzhzˉˉdzdzh_z \bar{h_{\bar{z}}} dz \otimes dz and its trajectories. For a pair of doubly connected domains, in which XX has finite conformal modulus, we establish the following principle: A mapping hHˉ2(X,Y)h \in \bar{\mathscr H}_2(X, Y) is energy-minimal if and only if its Hopf-differential is analytic in XX and real along the boundary of XX. In general, the energy-minimal mappings may not be injective, in which case one observes the occurrence of cracks in XX. Nevertheless, cracks are triggered only by the points in the boundary of YY where YY fails to be convex. The general law of formation of cracks reads as follows: Cracks propagate along vertical trajectories of the Hopf differential from the boundary of XX toward the interior of XX where they eventually terminate before making a crosscut.Comment: 51 pages, 4 figure

    Pinwheel patterns and powder diffraction

    Get PDF
    Pinwheel patterns and their higher dimensional generalisations display continuous circular or spherical symmetries in spite of being perfectly ordered. The same symmetries show up in the corresponding diffraction images. Interestingly, they also arise from amorphous systems, and also from regular crystals when investigated by powder diffraction. We present first steps and results towards a general frame to investigate such systems, with emphasis on statistical properties that are helpful to understand and compare the diffraction images. We concentrate on properties that are accessible via an alternative substitution rule for the pinwheel tiling, based on two different prototiles. Due to striking similarities, we compare our results with the toy model for the powder diffraction of the square lattice.Comment: 7 pages, 4 figure

    Pilot Study: Unique Response of Bone Tissue During an Investigation of Radio-Adaptive Effects in Mice

    Get PDF
    PURPOSE: We obtained bone tissue to evaluate the collateral effects of experiments designed to investigate molecular mechanisms of radio-adaptation in a mouse model. Radio-adaptation describes a process by which the prior exposure to low dose radiation can protect against the toxic effect of a subsequent high dose exposure. In the radio-adaptation experiments, C57Bl/6 mice were exposed to either a Sham or a priming Low Dose (5 cGy) of Cs-137 gamma rays before being exposed to either a Sham or High Dose (6 Gy) 24 hours later. ANALYSIS: Bone tissue were obtained from two experiments where mice were sacrificed at 3 days (n=3/group, 12 total) and at 14 days (n=6/group, 24 total) following high dose exposure. Tissues were analyzed to 1) evaluate a radio-adaptive response in bone tissue and 2) describe cellular and microstructural effects for two skeletal sites with different rates of bone turnover. One tibia and one lumbar vertebrae (LV2), collected at the 3-day time-point, were analyzed by bone histomorphometry and micro-CT to evaluate the cellular response and any evidence of microarchitectural impact. Likewise, tibia and LV2, collected at the 14-day time-point, were analyzed by micro-CT alone to evaluate resulting changes to bone structure and microarchitecture. The data were analyzed by 2-way ANOVA to evaluate the effects of the priming low dose radiation, of the high dose radiation, and of any interaction between the priming low and high doses of radiation. Bone histomorphometry was performed in the cancellous bone (aka trabecular bone) compartments of the proximal tibial metaphysis and of LV2. RESULTS: Cellular Response @ 3 Days The priming Low Dose radiation decreased osteoblast-covered bone perimeter in the proximal tibia and the total cell density in the bone marrow in the LV2. High Dose radiation, regardless of prior exposure to priming dose, dramatically reduced total cell density in bone marrow of both the long bone and vertebra. However, in the proximal tibia, High Dose radiation increased the osteoclast-covered bone perimeters, the density of adipocytes in bone marrow, and the area of bone marrow occupied by fat cells -- while in the LV2, adipocytes were rare and not stimulated by High Dose radiation. In an unexpected response, High Dose radiation dramatically increased (10-fold) osteoblast-covered bone perimeter in the LV2

    Random polynomials, random matrices, and LL-functions

    Full text link
    We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.Comment: Added background material. Final version. To appear in Nonlinearit

    Supersymmetric quantum cosmological billiards

    Full text link
    D=11 Supergravity near a space-like singularity admits a cosmological billiard description based on the hyperbolic Kac-Moody group E10. The quantization of this system via the supersymmetry constraint is shown to lead to wavefunctions involving automorphic (Maass wave) forms under the modular group W^+(E10)=PSL(2,O) with Dirichlet boundary conditions on the billiard domain. A general inequality for the Laplace eigenvalues of these automorphic forms implies that the wave function of the universe is generically complex and always tends to zero when approaching the initial singularity. We discuss possible implications of this result for the question of singularity resolution in quantum cosmology and comment on the differences with other approaches.Comment: 4 pages. v2: Added ref. Version to be published in PR

    Evidence for the classical integrability of the complete AdS(4) x CP(3) superstring

    Get PDF
    We construct a zero-curvature Lax connection in a sub-sector of the superstring theory on AdS(4) x CP(3) which is not described by the OSp(6|4)/U(3) x SO(1,3) supercoset sigma-model. In this sub-sector worldsheet fermions associated to eight broken supersymmetries of the type IIA background are physical fields. As such, the prescription for the construction of the Lax connection based on the Z_4-automorphism of the isometry superalgebra OSp(6|4) does not do the job. So, to construct the Lax connection we have used an alternative method which nevertheless relies on the isometry of the target superspace and kappa-symmetry of the Green-Schwarz superstring.Comment: 1+26 pages; v2: minor typos corrected, acknowledgements adde

    Doubly connected minimal surfaces and extremal harmonic mappings

    Get PDF
    The concept of a conformal deformation has two natural extensions: quasiconformal and harmonic mappings. Both classes do not preserve the conformal type of the domain, however they cannot change it in an arbitrary way. Doubly connected domains are where one first observes nontrivial conformal invariants. Herbert Groetzsch and Johannes C. C. Nitsche addressed this issue for quasiconformal and harmonic mappings, respectively. Combining these concepts we obtain sharp estimates for quasiconformal harmonic mappings between doubly connected domains. We then apply our results to the Cauchy problem for minimal surfaces, also known as the Bjorling problem. Specifically, we obtain a sharp estimate of the modulus of a doubly connected minimal surface that evolves from its inner boundary with a given initial slope.Comment: 35 pages, 2 figures. Minor edits, references adde

    Sobolev Inequalities for Differential Forms and Lq,pL_{q,p}-cohomology

    Full text link
    We study the relation between Sobolev inequalities for differential forms on a Riemannian manifold (M,g)(M,g) and the Lq,pL_{q,p}-cohomology of that manifold. The Lq,pL_{q,p}-cohomology of (M,g)(M,g) is defined to be the quotient of the space of closed differential forms in Lp(M)L^p(M) modulo the exact forms which are exterior differentials of forms in Lq(M)L^q(M).Comment: This paper has appeared in the Journal of Geometric Analysis, (only minor changes have been made since verion 1

    Principal forms X^2 + nY^2 representing many integers

    Get PDF
    In 1966, Shanks and Schmid investigated the asymptotic behavior of the number of positive integers less than or equal to x which are represented by the quadratic form X^2+nY^2. Based on some numerical computations, they observed that the constant occurring in the main term appears to be the largest for n=2. In this paper, we prove that in fact this constant is unbounded as n runs through positive integers with a fixed number of prime divisors.Comment: 10 pages, title has been changed, Sections 2 and 3 are new, to appear in Abh. Math. Sem. Univ. Hambur

    Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and p_x+ip_y paired superfluids

    Full text link
    Many trial wavefunctions for fractional quantum Hall states in a single Landau level are given by functions called conformal blocks, taken from some conformal field theory. Also, wavefunctions for certain paired states of fermions in two dimensions, such as p_x+ip_y states, reduce to such a form at long distances. Here we investigate the adiabatic transport of such many-particle trial wavefunctions using methods from two-dimensional field theory. One context for this is to calculate the statistics of widely-separated quasiholes, which has been predicted to be non-Abelian in a variety of cases. The Berry phase or matrix (holonomy) resulting from adiabatic transport around a closed loop in parameter space is the same as the effect of analytic continuation around the same loop with the particle coordinates held fixed (monodromy), provided the trial functions are orthonormal and holomorphic in the parameters so that the Berry vector potential (or connection) vanishes. We show that this is the case (up to a simple area term) for paired states (including the Moore-Read quantum Hall state), and present general conditions for it to hold for other trial states (such as the Read-Rezayi series). We argue that trial states based on a non-unitary conformal field theory do not describe a gapped topological phase, at least in many cases. By considering adiabatic variation of the aspect ratio of the torus, we calculate the Hall viscosity, a non-dissipative viscosity coefficient analogous to Hall conductivity, for paired states, Laughlin states, and more general quantum Hall states. Hall viscosity is an invariant within a topological phase, and is generally proportional to the "conformal spin density" in the ground state.Comment: 44 pages, RevTeX; v2 minor changes; v3 typos corrected, three small addition
    corecore