915 research outputs found
Measurement of the electron transmission rate of the gating foil for the TPC of the ILC experiment
We have developed a gating foil for the time projection chamber envisaged as
a central tracker for the international linear collider experiment. It has a
structure similar to the Gas Electron Multiplier (GEM) with a higher optical
aperture ratio and functions as an ion gate without gas amplification. The
transmission rate for electrons was measured in a counting mode for a wide
range of the voltages applied across the foil using an Fe source and a
laser in the absence of a magnetic field. The blocking power of the foil
against positive ions was estimated from the electron transmissions.Comment: 25 pages containing 14 figures and 1 tabl
Enhanced Hyperthermia Induced by MDMA in Parkin Knockout Mice
MDMA (3,4-methylenedioxymethamphetamine) is reportedly severely toxic to both dopamine (DA) and serotonin neurons. MDMA significantly reduces the number of DA neurons in the substantia nigra, but not in the nucleus accumbens, indicating that MDMA causes selective destruction of DA neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. Parkinson’s disease (PD) is a neurodegenerative disorder of multifactorial origin. The pathological hallmark of PD is the degeneration of DA neurons in the nigrostriatal pathway. Mutations in the parkin gene are frequently observed in autosomal recessive parkinsonism in humans. Parkin is hypothesized to protect against neurotoxic insult, and we attempted to clarify the role of parkin in MDMA-induced hyperthermia, one of the causal factors of neuronal damage, using parkin knockout mice. Body temperature was measured rectally before and 15, 30, 45, and 60 min after intraperitoneal injection of MDMA (30 mg/kg) at an ambient temperature of 22 ± 2°C. Significantly enhanced hyper-thermia after MDMA injection was observed in heterozygous and homozygous parkin knockout mice compared with wildtype mice, suggesting that parkin plays a protective role in MDMA neurotoxicity
Bubble burst as jamming phase transition
Recently research on bubble and its burst attract much interest of
researchers in various field such as economics and physics. Economists have
been regarding bubble as a disorder in prices. However, this research strategy
has overlooked an importance of the volume of transactions. In this paper, we
have proposed a bubble burst model by focusing the transactions incorporating a
traffic model that represents spontaneous traffic jam. We find that the
phenomenon of bubble burst shares many similar properties with traffic jam
formation by comparing data taken from US housing market. Our result suggests
that the transaction could be a driving force of bursting phenomenon.Comment: 9 pages,12 figure
Effects of MDMA on Extracellular Dopamine and Serotonin Levels in Mice Lacking Dopamine and/or Serotonin Transporters
3,4-Methylendioxymethamphetamine (MDMA) has both stimulatory and hallucinogenic properties which make its psychoactive effects unique and different from those of typical psychostimulant and hallucinogenic agents. The present study investigated the effects of MDMA on extracellular dopamine (DAex) and serotonin (5-HTex) levels in the striatum and prefrontal cortex (PFC) using in vivo microdialysis techniques in mice lacking DA transporters (DAT) and/or 5-HT transporters (SERT). subcutaneous injection of MDMA (3, 10 mg/kg) significantly increased striatal DAex in wild-type mice, SERT knockout mice, and DAT knockout mice, but not in DAT/SERT double-knockout mice. The MDMA-induced increase in striatal DAex in SERT knockout mice was significantly less than in wildtype mice. In the PFC, MDMA dose-dependently increased DAex levels in wildtype, DAT knockout, SERT knockout and DAT/SERT double-knockout mice to a similar extent. In contrast, MDMA markedly increased 5-HTex in wildtype and DAT knockout mice and slightly increased 5-HTex in SERT-KO and DAT/SERT double-knockout mice. The results confirm that MDMA acts at both DAT and SERT and increases DAex and 5-HTex
Interhemispheric Interactions between the Human Primary Somatosensory Cortices
In the somatosensory domain it is still unclear at which processing stage information reaches the opposite hemispheres. Due to dense transcallosal connections, the secondary somatosensory cortex (S2) has been proposed to be the key candidate for interhemispheric information transfer. However, recent animal studies showed that the primary somatosensory cortex (S1) might as well account for interhemispheric information transfer. Using paired median nerve somatosensory evoked potential recordings in humans we tested the hypothesis that interhemispheric inhibitory interactions in the somatosensory system occur already in an early cortical processing stage such as S1. Conditioning right S1 by electrical median nerve (MN) stimulation of the left MN (CS) resulted in a significant reduction of the N20 response in the target (left) S1 relative to a test stimulus (TS) to the right MN alone when the interstimulus interval between CS and TS was between 20 and 25 ms. No such changes were observed for later cortical components such as the N20/P25, N30, P40 and N60 amplitude. Additionally, the subcortically generated P14 response in left S1 was also not affected. These results document the existence of interhemispheric inhibitory interactions between S1 in human subjects in the critical time interval of 20–25 ms after median nerve stimulation
Relative finger position influences whether you can localize tactile stimuli
To investigate whether the relative positions of the fingers influence tactile localization, participants were asked to localize tactile stimuli applied to their fingertips. We measured the location and rate of errors for three finger configurations: fingers stretched out and together so that they are touching each other, fingers stretched out and spread apart maximally and fingers stretched out with the two hands on top of each other so that the fingers are interwoven. When the fingers contact each other, it is likely that the error rate to the adjacent fingers will be higher than when the fingers are spread apart. In particular, we reasoned that localization would probably improve when the fingers are spread. We aimed at assessing whether such adjacency was measured in external coordinates (taking proprioception into account) or on the body (in skin coordinates). The results confirmed that the error rate was lower when the fingers were spread. However, there was no decrease in error rate to neighbouring fingertips in the fingers spread condition in comparison with the fingers together condition. In an additional experiment, we showed that the lower error rate when the fingers were spread was not related to the continuous tactile input from the neighbouring fingers when the fingers were together. The current results suggest that information from proprioception is taken into account in perceiving the location of a stimulus on one of the fingertips
- …