276 research outputs found

    Cavity optomechanics with feedback and fluids

    Get PDF

    The childrens palliative care provider of the future: A blueprint to spark, scale and share innovation

    Get PDF
    This policy report sets out an optimistic vision of what a world-class provider of children's palliative care (CPC) could look like in the future. It proposes nine key features through which providers can innovate to improve access and quality over time, drawing on best practice and trends as described by 50 CPC service leaders in 27 countries, as well as insights from other healthcare sectors. Recognising that there is huge variation among CPC providers and the systems they work in, this 'blueprint' is intended for inspiration and challenge, not prescription. In addition to key areas for future innovation it also highlights many areas in which CPC providers are already exemplars within the healthcare sector. CPC leaders and other stakeholders are invited to reflect on the opportunities the blueprint describes and how their own organisations might benefit from pursuing these

    A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    Get PDF
    Background: Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting

    The use of hydrogen to separate and recycle neodymium–iron–boron-type magnets from electronic waste

    Get PDF
    AbstractThe rare earth metals have been identified by the European Union and the United States as being at greatest supply risk of all the materials for clean energy technologies. Of particular concern are neodymium and dysprosium, both of which are employed in neodymium–iron–boron based magnets. Recycling of magnets based on these materials and contained within obsolete electronic equipment, could provide an additional and secure supply. In the present work, hydrogen has been employed as a processing agent to decrepitate sintered neodymium–iron–boron based magnets contained within hard disk drives into a demagnetised, hydrogenated powder. This powder was then extracted mechanically from the devices with an extraction efficiency of 90 ± 5% and processed further using a combination of sieves and ball bearings, to produce a powder containing <330 parts per million of nickel contamination. It is then possible for the extracted powder to be re-processed in a number of ways, namely, directly by blending and re-sintering to form fully dense magnets, by Hydrogenation, Disproportionation, Desorption, Recombination processing to produce an anisotropic coercive powder suitable for bonded magnets, by re-melting; or by chemical extraction of the rare earth elements from the alloy. For example, it was shown that, by the re-sintering route, it was possible to recover >90% of the magnetic properties of the starting material with significantly less energy than that employed in primary magnet production. The particular route used will depend upon the magnetic properties required, the level of contamination of the extracted material and the compositional variation of the feedstock. The various possibilities have been summarised in a flow diagram

    Baseline spatial distribution of malaria prior to an elimination programme in Vanuatu

    Get PDF
    BACKGROUND: The Ministry of Health in the Republic of Vanuatu has implemented a malaria elimination programme in Tafea Province, the most southern and eastern limit of malaria transmission in the South West Pacific. Tafea Province is comprised of five islands with malaria elimination achieved on one of these islands (Aneityum) in 1998. The current study aimed to establish the baseline distribution of malaria on the most malarious of the province's islands, Tanna Island, to guide the implementation of elimination activities. METHODS: A parasitological survey was conducted in Tafea Province in 2008. On Tanna Island there were 4,716 participants from 220 villages, geo-referenced using a global position system. Spatial autocorrelation in observed prevalence values was assessed using a semivariogram. Backwards step-wise regression analysis was conducted to determine the inclusion of environmental and climatic variables into a prediction model. The Bayesian geostatistical logistic regression model was used to predict malaria risk, and associated uncertainty across the island. RESULTS: Overall, prevalence on Tanna was 1.0% for Plasmodium falciparum (accounting for 32% of infections) and 2.2% for Plasmodium vivax (accounting for 68% of infections). Regression analysis showed significant association with elevation and distance to coastline for P. vivax and P. falciparum, but no significant association with NDVI or TIR. Colinearity was observed between elevation and distance to coastline with the later variable included in the final Bayesian geostatistical model for P. vivax and the former included in the final model for P. falciparum. Model validation statistics revealed that the final Bayesian geostatistical model had good predictive ability. CONCLUSION: Malaria in Tanna Island, Vanuatu, has a focal and predominantly coastal distribution. As Vanuatu refines its elimination strategy, malaria risk maps represent an invaluable resource in the strategic planning of all levels of malaria interventions for the island

    Operational research to inform a sub-national surveillance intervention for malaria elimination in Solomon Islands

    Get PDF
    Background: Successful reduction of malaria transmission to very low levels has made Isabel Province, Solomon Islands, a target for early elimination by 2014. High malaria transmission in neighbouring provinces and the potential for local asymptomatic infections to cause malaria resurgence highlights the need for sub-national tailoring of surveillance interventions. This study contributes to a situational analysis of malaria in Isabel Province to inform an appropriate surveillance intervention. Methods. A mixed method study was carried out in Isabel Province in late 2009 and early 2010. The quantitative component was a population-based prevalence survey of 8,554 people from 129 villages, which were selected using a spatially stratified sampling approach to achieve uniform geographical coverage of populated areas. Diagnosis was initially based on Giemsa-stained blood slides followed by molecular analysis using polymerase chain reaction (PCR). Local perceptions and practices related to management of fever and treatment-seeking that would impact a surveillance intervention were also explored using qualitative research methods. Results: Approximately 33% (8,554/26,221) of the population of Isabel Province participated in the survey. Only one subject was found to be infected with Plasmodium falciparum (Pf) (96 parasites/L) using Giemsa-stained blood films, giving a prevalence of 0.01%. PCR analysis detected a further 13 cases, giving an estimated malaria prevalence of 0.51%. There was a wide geographical distribution of infected subjects. None reported having travelled outside Isabel Province in the previous three months suggesting low-level indigenous malaria transmission. The qualitative findings provide warning signs that the current community vigilance approach to surveillance will not be sufficient to achieve elimination. In addition, fever severity is being used by individuals as an indicator for malaria and a trigger for timely treatment-seeking and case reporting. In light of the finding of a low prevalence of parasitaemia, the current surveillance system may not be able to detect and prevent malaria resurgence. Conclusion: An adaption to the malERA surveillance framework is proposed and recommendations made for a tailored provincial-level surveillance intervention, which will be essential to achieve elimination, and to maintain this status while the rest of the country catches up
    corecore