5 research outputs found

    Indications of a link between seismotectonics and CH4 release from seeps off Costa Rica

    Get PDF
    Measurements of CH4 concentrations in the bottom water during two discrete sampling periods in subsequent years above different cold seeps at the Pacific margin off Costa Rica indicate large-scale variations of CH4 release. CH4 is emitted from mud extrusions and a slide scar at 1000–2300 m water depth. Maximum CH4 concentrations were found to be lower above all investigated sites in autumn 2003 than in autumn 2002 although seep sites are up to 300 km apart. Tidal and current changes were observed but found to apply only to individual seep sites. Increased seismic activity connected to the moment magnitude (M W ) 6.4 earthquake offshore Costa Rica in June 2002 could have had an impact on all seep sites and thereby caused an increase in CH4 emission. This is supported by the largest variations of CH4 concentration found above mud extrusions located above faults likely more strongly affected by tectonic movements. Even though our data indicate a relation between seismicity and CH4 seepage, the relation is not proven, and future work is needed to comprehensively test this hypothesis

    Quenched phosphorescence as alternative detection mode in the chiral separation of methotrexate by electrokinetic chromatography

    Get PDF
    Quenched phosphorescence was used, for the first time, as detection mode in the chiral separation of methotrexate (MTX) enantiomers by electrokinetic chromatography. The detection is based on dynamic quenching of the strong emission of the phosphorophore 1-bromo-4-naphthalene sulfonic acid (BrNS) by MTX under deoxygenated conditions. The use of a background electrolyte with 3 mg/mL 2-hydroxypropyl-β-cyclodextrin and 20% MeOH in 25 mM phosphate buffer (pH 7.0) and an applied voltage of 30 kV allowed the separation of l-MTX and its enantiomeric impurity d-MTX with sufficient resolution. In the presence of 1 mM BrNS, a detection limit of 3.2 × 10−7 M was achieved, about an order of magnitude better than published techniques based on UV absorption. The potential of the method was demonstrated with a degradation study and an enantiomeric purity assessment of l-MTX. Furthermore, l-MTX was determined in a cell culture extract as a proof-of-principle experiment to show the applicability of the method to biological samples

    Binding of naproxen enantiomers to human serum albumin studied by fluorescence and room-temperature phosphorescence

    Full text link
    The interaction of the enantiomers of the non-steroidal anti-inflammatory drug naproxen (NPX) with human serum albumin (HSA) has been investigated using fluorescence and phosphorescence spectroscopy in the steady-state and time-resolved mode. The absorption, fluorescence excitation, and fluorescence emission spectra of (S)-NPX and (R)-NPX differ in shape in the presence of HSA, indicating that these enantiomers experience a different environment when bound. In solutions containing 0.2 M KI, complexation with HSA results in a strongly increased NPX fluorescence intensity and a decreased NPX phosphorescence intensity due to the inhibition of the collisional interaction with the heavy atom iodide. Fluorescence intensity curves obtained upon selective excitation of NPX show 8-fold different slopes for bound and free NPX. No significant difference in the binding constants of (3.8 ± 0.6) 105 M1 for (S)-NPX and (3.9 ± 0.6) 105 M1 for (R)-NPX was found. Furthermore, the addition of NPX quenches the phosphorescence of the single tryptophan in HSA (Trp-214) based on Dexter energy transfer. The short-range nature of this mechanism explains the upward curvature of the Stern–Volmer plot observed for HSA: At low concentrations NPX binds to HSA at a distance from Trp-214 and no quenching occurs, whereas at high NPX concentrations the phosphorescence intensity decreases due to dynamic quenching by NPX diffusing into site I from the bulk solution. The dynamic quenching observed in the Stern–Volmer plots based on the longest phosphorescence lifetime indicates an overall binding constant to HSA of about 3 105 M1 for both enantiomers. 201The authors thank Dr. Gert van der Zwan for stimulating discussions, Kim van den Boom for assistance with the time-resolved fluorescence measurements, the Dutch Foundation for the Advancement of Science (NWO-CW ECHO Grant No. 700.55.014 to I.L.) and the Spanish government (Ramon y Cajal contract RyC-2007-00476 to V.L-V.) for financial support. V.L.-V.'s visit to LaserLaB VU Amsterdam was made possible through the access program of Laserlab-Europe, EU-Integrated Infrastructures Initiative contract 2008-1-228334, project lcvu001484.Lammers, I.; Lhiaubet, VL.; Freek, A.; Miranda Alonso, MÁ.; Gooijer, C. (2013). Binding of naproxen enantiomers to human serum albumin studied by fluorescence and room-temperature phosphorescence. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 105:67-73. https://doi.org/10.1016/j.saa.2012.12.007S677310
    corecore