153 research outputs found

    The Constitutive Relations and the Magnetoelectric Effect for Moving Media

    Full text link
    In this paper the constitutive relations for moving media with homogeneous and isotropic electric and magnetic properties are presented as the connections between the generalized magnetization-polarization bivector %\mathcal{M} and the electromagnetic field F. Using the decompositions of F and M\mathcal{M}, it is shown how the polarization vector P(x) and the magnetization vector M(x) depend on E, B and two different velocity vectors, u - the bulk velocity vector of the medium, and v - the velocity vector of the observers who measure E and B fields. These constitutive relations with four-dimensional geometric quantities, which correctly transform under the Lorentz transformations (LT), are compared with Minkowski's constitutive relations with the 3-vectors and several essential differences are pointed out. They are caused by the fact that, contrary to the general opinion, the usual transformations of the 3-vectors % \mathbf{E}, B\mathbf{B}, P\mathbf{P}, M\mathbf{M}, etc. are not the LT. The physical explanation is presented for the existence of the magnetoelectric effect in moving media that essentially differs from the traditional one.Comment: 18 pages, In Ref. [10] here, which corresponds to Ref. [18] in the published paper in IJMPB, Z. Oziewicz's published paper is added. arXiv admin note: text overlap with arXiv:1101.329

    The Lorentz transformations of the vectors E, B, P, M and the external electric fields from a stationary superconducting wire with a steady current and from a stationary permanent magnet

    Full text link
    In the first part of this paper we review the fundamental difference between the usual transformations of the three-dimensional (3D) vectors of the electric field E\mathbf{E}, the magnetic field B\mathbf{B}, the polarization P\mathbf{P}, the magnetization M\mathbf{M} and the Lorentz transformations of the 4D geometric quantities, vectors E, B, P, M, with many additional explanations and several new results. In the second part, we have discussed the existence of the electric field vector E outside a stationary superconducting wire with a steady current and also different experiments for the detection of such electric fields. Furthermore, a fundamental prediction of the existence of the external electric field vector E from a stationary permanent magnet is considered. These electric fields are used for the resolution of the "charge-magnet paradox" with 4D geometric quantities for a qualitative explanation of the Aharonov-Bohm effect in terms of fields and not, as usual, in terms of the vector potential and for a qualitative explanation that the particle interference is not a test of a Lorentz-violating model of electrodynamics according to which a magnetic solenoid generates not only a static magnetic field but also a static electric field.Comment: 57 pages, minor changes, this version will be published in the Proceedings of the IARD 201

    Photometric redshifts from reconstructed QSO templates

    Get PDF
    From SDSS commissioning photometric and spectroscopic data, we investigate the utility of photometric redshift techniques to the task of estimating QSO redshifts. We consider empirical methods (e.g. nearest-neighbor searches and polynomial fitting), standard spectral template fitting and hybrid approaches (i.e. training spectral templates from spectroscopic and photometric observations of QSOs). We find that in all cases, due to the presence of strong emission-lines within the QSO spectra, the nearest-neighbor and template fitting methods are superior to the polynomial fitting approach. Applying a novel reconstruction technique, we can, from the SDSS multicolor photometry, reconstruct a statistical representation of the underlying SEDs of the SDSS QSOs. Although, the reconstructed templates are based on only broadband photometry the common emission lines present within the QSO spectra can be recovered in the resulting spectral energy distributions. The technique should be useful in searching for spectral differences among QSOs at a given redshift, in searching for spectral evolution of QSOs, in comparing photometric redshifts for objects beyond the SDSS spectroscopic sample with those in the well calibrated photometric redshifts for objects brighter than 20th magnitude and in searching for systematic and time variable effects in the SDSS broad band photometric and spectral photometric calibrations.Comment: 21 pages, 9 figures, LaTeX AASTeX, submitted to A

    A Study of Cepheids in M81 with the Large Binocular Telescope (Efficiently Calibrated with HST)

    Get PDF
    We identify and phase a sample of 107 Cepheids with 10<P/days<100 in M81 using the LBT and calibrate their BVI mean magnitudes with archival HST data. The use of a ground-based telescope to identify and phase the Cepheids and HST only for the final calibration reduces the demand on HST by nearly an order of magnitude and yields Period-Luminosity (PL) relations with dispersions comparable to the best LMC samples. We fit the sample using the OGLE-II LMC PL relations and are unable to find a self-consistent distance for different band combinations or radial locations within M81. We can do so after adding a radial dependence to the PL zero point that corresponds to a luminosity dependence on metallicity of g_mu=-0.56+/-0.36 mag/dex. We find marginal evidence for a shift in color as a function of metallicity, distinguishable from the effects of extinction, of g_2=+0.07+/-0.03 mag/dex. We find a distance modulus for M81, relative to the LMC, of mu(M81-LMC)=9.39+/-0.14 mag, including uncertainties due to the metallicity corrections. This corresponds to a distance to M81 of 3.6+/-0.2 Mpc, assuming a LMC distance modulus of 18.41 mag. We carry out a joint analysis of M81 and NGC4258 Cepheids and simultaneously solve for the distance of M81 relative to NGC4258 and the metallicity corrections. Given the current data, the uncertainties of such joint fits are dominated by the relative metallicities and the abundance gradients rather than by measurement errors of the Cepheid magnitudes or colors. We find mu(M81-LMC)=9.40 (-0.11/+0.15) mag, mu(N4258-LMC)=11.08 (-0.17/+0.21) mag and mu(N4258-M81)=1.68+/-0.08 mag and joint metallicity corrections of g_mu=-0.62 (-0.35/+0.31) mag/dex and g_2=0.01+/-0.01 mag/dex. Quantitative analyses of Cepheid distances must take into account both the metallicity dependencies of the Cepheids and the uncertainties in the abundance estimates. (ABRIDGED)Comment: 45 pages, 14 figures, 4 tables, appeared in The Astrophysical Journa

    A Catalog of Luminous Infrared Galaxies in the IRAS Survey and the Second Data Release of the SDSS

    Full text link
    We select the Luminous Infrared Galaxies by cross-correlating the Faint Source Catalogue (FSC) and Point Source Catalogue (PSC) of the IRAS Survey with the Second Data Release of the SDSS for studying their infrared and optical properties. The total number of our sample is 1267 for FSC and 427 for PSC by using 2σ\sigma significance level cross-section. The "likelihood ratio" method is used to estimate the sample's reliability and for a more reliable subsample (908 for FSC and 356 for PSC) selection. Then a Catalog with both the infrared, optical and radio informations is presented and will be used in further works. Some statistical results show that the Luminous Infrared Galaxies are quite different from the Ultra-Luminous Infrared Galaxies. The AGN fractions of galaxies with different infrared luminosities and the radio to infrared correlations are consist with previous studies.Comment: 15 pages, 11 figures. Accepted by ChJAA. Reference adde

    Energy Scenarios for South Eastern Europe: A close look into the Western Balkans

    Get PDF
    "The Energy Scenarios for South East Europe" thematic seminar took place on the 15th of December 2015 in Vienna, Austria. The workshop was organized by Institute of Energy and Transport of the European Commission's Joint Research Centre (JRC-IET), hosted by the Energy Community Secretariat (ECS) and sponsored by the Directorate-General for Neighbourhood and Enlargement Negotiations (DG-NEAR) in the framework of the Travel Accommodation and Conference facility for Western Balkans and Turkey, a programme of dissemination activities organised by the Commission in the EU or the beneficiary country in connection with the enlargement process and the pre-accession strategy. The aim of the workshop was to bring together representatives from think tanks, scientific institutes, the academia and the private sector with government officials, the national statistical agencies and the local TSO representatives from the Western Balkan region to exchange views on potential energy technology deployment scenarios that could facilitate a low carbon development pathway for the enlargement countries, but also exchange on the methodologies utilized and identify challenges as well as potential pitfalls in this process. The workshop included three sessions of specific thematic focus. The first session provided the "regional picture" with forecasts on the development of the energy and power systems in the western Balkans. The second session discussed case studies on low carbon development trajectories for specific countries in the region; and the third session explored the role of particular technologies in this context. This report comprises of long abstracts from the workshop presentations and closes with a chapter on conclusions and recommendations that resulted from the discussion sessions

    High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data IV: Luminosity Function from the Fall Equatorial Stripe Sampl

    Get PDF
    This is the fourth paper in a series aimed at finding high-redshift quasars from five-color imaging data taken along the Celestial Equator by the SDSS. during its commissioning phase. In this paper, we use the color-selected sample of 39 luminous high-redshift quasars presented in Paper III to derive the evolution of the quasar luminosity function over the range of 3.6<z<5.0, and -27.5<M_1450<-25.5 (Omega=1, H_0=50 km s^-1 Mpc^-1). We use the selection function derived in Paper III to correct for sample incompleteness. The luminosity function is estimated using three different methods: (1) the 1/V_a estimator; (2) a maximum likelihood solution, assuming that the density of quasars depends exponentially on redshift and as a power law in luminosity and (3) Lynden-Bell's non-parametric C^- estimator. All three methods give consistent results. The luminous quasar density decreases by a factor of ~ 6 from z=3.5 to z=5.0, consistent with the decline seen from several previous optical surveys at z<4.5. The luminosity function follows psi(L) ~ L^{-2.5} for z~4 at the bright end, significantly flatter than the bright end luminosity function psi(L) \propto L^{-3.5} found in previous studies for z<3, suggesting that the shape of the quasar luminosity function evolves with redshift as well, and that the quasar evolution from z=2 to 5 cannot be described as pure luminosity evolution. Possible selection biases and the effect of dust extinction on the redshift evolution of the quasar density are also discussed.Comment: AJ accepted, with minor change

    Photometric Redshifts of Quasars

    Get PDF
    We demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter system and the quality of the SDSS imaging data are sufficient for determining accurate and precise photometric redshifts (``photo-z''s) of quasars. Using a sample of 2625 quasars, we show that photo-z determination is even possible for z<=2.2 despite the lack of a strong continuum break that robust photo-z techniques normally require. We find that, using our empirical method on our sample of objects known to be quasars, approximately 70% of the photometric redshifts are correct to within delta z = 0.2; the fraction of correct photometric redshifts is even better for z>3. The accuracy of quasar photometric redshifts does not appear to be dependent upon magnitude to nearly 21st magnitude in i'. Careful calibration of the color-redshift relation to 21st magnitude may allow for the discovery of on the order of 10^6 quasars candidates in addition to the 10^5 quasars that the SDSS will confirm spectroscopically. We discuss the efficient selection of quasar candidates from imaging data for use with the photometric redshift technique and the potential scientific uses of a large sample of quasar candidates with photometric redshifts.Comment: 29 pages, 8 figures, submitted to A

    The Sloan Digital Sky Survey Quasar Catalog I. Early Data Release

    Get PDF
    We present the first edition of the Sloan Digital Sky Survey (SDSS) Quasar Catalog. The catalog consists of the 3814 objects (3000 discovered by the SDSS) in the initial SDSS public data release that have at least one emission line with a full width at half maximum larger than 1000 km/s, luminosities brighter than M_i^* = -23, and highly reliable redshifts. The area covered by the catalog is 494 square degrees; the majority of the objects were found in SDSS commissioning data using a multicolor selection technique. The quasar redshifts range from 0.15 to 5.03. For each object the catalog presents positions accurate to better than 0.2" rms per coordinate, five band (ugriz) CCD-based photometry with typical accuracy of 0.05 mag, radio and X-ray emission properties, and information on the morphology and selection method. Calibrated spectra of all objects in the catalog, covering the wavelength region 3800 to 9200 Angstroms at a spectral resolution of 1800-2100, are also available. Since the quasars were selected during the commissioning period, a time when the quasar selection algorithm was undergoing frequent revisions, the sample is not homogeneous and is not intended for statistical analysis.Comment: 27 pages, 4 figures, 4 tables, accepted by A
    corecore