29 research outputs found

    Use of an electronic patient-reported outcome measure in the management of patients with advanced chronic kidney disease:the RePROM pilot trial protocol

    Get PDF
    INTRODUCTION Chronic kidney disease (CKD) affects up to 16% of adults in the UK. Patient quality of life is particularly reduced in end-stage renal disease and is strongly associated with increased hospitalisation and mortality. Thus, accurate and responsive healthcare is a key priority. Electronic patient-reported outcome measures (ePROMs) are online questionnaires which ask patients to self-rate their health status. Evidence in oncology suggests that the use of ePROM data within routine care, alongside clinical information, may enhance symptom management and improve patient outcomes. However, National Health Service (NHS)-based ePROM research in CKD is lacking. This pilot trial will assess the feasibility of undertaking a full-scale randomised controlled trial (RCT) in patients with CKD within the NHS. METHODS AND ANALYSIS The renal ePROM pilot trial is an investigator-led single-centre, open-label, two-arm randomised controlled pilot trial of 66 participants ≥18 years with advanced CKD. Participants will be randomised to receive either usual care or usual care supplemented with an ePROM intervention. Participants within the intervention arm will be asked to submit monthly self-reports of their health status using the ePROM system. The system will provide tailored information to patients in response to each report and notify the clinical team of patient deterioration. The renal clinical team will monitor for ePROM notifications and will respond with appropriate action, in line with standard clinical practice. Measures of study feasibility, participant quality of life and CKD severity will be completed at 3 monthly intervals. Health economic outcomes will be assessed. Clinicians will record treatment decision-making. Acceptability and feasibility of the protocol will be assessed alongside outcome measure and intervention compliance rates. Qualitative process evaluation will be conducted. ETHICS AND DISSEMINATION The findings will inform the design of a full-scale RCT and the results will be submitted for publication in peer-reviewed journals. The study has ethical approval. TRIAL REGISTRATION NUMBERS ISRCTN12669006; Pre-results

    Evaluating the GeoSnap 13-μ\mum Cut-Off HgCdTe Detector for mid-IR ground-based astronomy

    Full text link
    New mid-infrared HgCdTe (MCT) detector arrays developed in collaboration with Teledyne Imaging Sensors (TIS) have paved the way for improved 10-μ\mum sensors for space- and ground-based observatories. Building on the successful development of longwave HAWAII-2RGs for space missions such as NEO Surveyor, we characterize the first 13-μ\mum GeoSnap detector manufactured to overcome the challenges of high background rates inherent in ground-based mid-IR astronomy. This test device merges the longwave HgCdTe photosensitive material with Teledyne's 2048x2048 GeoSnap-18 (18-μ\mum pixel) focal plane module, which is equipped with a capacitive transimpedance amplifier (CTIA) readout circuit paired with an onboard 14-bit analog-to-digital converter (ADC). The final assembly yields a mid-IR detector with high QE, fast readout (>85 Hz), large well depth (>1.2 million electrons), and linear readout. Longwave GeoSnap arrays would ideally be deployed on existing ground-based telescopes as well as the next generation of extremely large telescopes. While employing advanced adaptive optics (AO) along with state-of-the-art diffraction suppression techniques, instruments utilizing these detectors could attain background- and diffraction-limited imaging at inner working angles <10 λ/D\lambda/D, providing improved contrast-limited performance compared to JWST MIRI while operating at comparable wavelengths. We describe the performance characteristics of the 13-μ\mum GeoSnap array operating between 38-45K, including quantum efficiency, well depth, linearity, gain, dark current, and frequency-dependent (1/f) noise profile.Comment: 17 pages, 17 figures. Accepted for publication in special addition of Astronomische Nachrichten / Astronomical Notes as a contribution to SDW202

    Which older people decline participation in a primary care trial of physical activity and why: insights from a mixed methods approach

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright 2014 Rogers et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Background: Physical activity is of vital importance to older peoples’ health. Physical activity intervention studies with older people often have low recruitment, yet little is known about non-participants. Methods: Patients aged 60–74 years from three UK general practices were invited to participate in a nurse-supported pedometer-based walking intervention. Demographic characteristics of 298 participants and 690 non-participants were compared. Health status and physical activity of 298 participants and 183 non-participants who completed a survey were compared using age, sex adjusted odds ratios (OR) (95% confidence intervals). 15 non-participants were interviewed to explore perceived barriers to participation. Results: Recruitment was 30% (298/988). Participants were more likely than non-participants to be female (54% v 47%; p = 0.04) and to live in affluent postcodes (73% v 62% in top quintile; p < 0.001). Participants were more likely than non-participants who completed the survey to have an occupational pension OR 2.06 (1.35-3.13), a limiting longstanding illness OR 1.72 (1.05-2.79) and less likely to report being active OR 0.55 (0.33-0.93) or walking fast OR 0.56 (0.37-0.84). Interviewees supported general practice-based physical activity studies, particularly walking, but barriers to participation included: already sufficiently active, reluctance to walk alone or at night, physical symptoms, depression, time constraints, trial equipment and duration. Conclusion: Gender and deprivation differences suggest some selection bias. However, trial participants reported more health problems and lower activity than non-participants who completed the survey, suggesting appropriate trial selection in a general practice population. Non-participant interviewees indicated that shorter interventions, addressing physical symptoms and promoting confidence in pursuing physical activity, might increase trial recruitment and uptake of practice-based physical activity endeavours.The National Institute for Health Research (NIHR) under its Research for Patient Benefit Programme (Grant Reference Number PB-PG-0909-20055)

    The VIS detector system of SOXS

    Get PDF
    SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous ow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions.Comment: 9 pages, 13 figures, to be published in SPIE Proceedings 1070

    Very accurate cryogenic mechanisms for CRIRES+

    Get PDF
    After 5 years of operation on the VLT, a large upgrade of CRIRES (the ESO Cryogenic InfraRed Echelle Spectrograph) was decided mainly in order to increase the efficiency. Using a cross dispersion design allows better wavelength coverage per exposure. This means a complete re-design of the cryogenic pre-optic which were including a predispersion stage with a large prism as dispersive element. The new design requires a move of the entrance slit and associated decker toward the first intermediate focal plane right behind the window. Implement 2 functions with high positioning accuracy in a pre-defined and limited space was a real challenge. The design and the test results recorded in the ESO Cryogenic Test Facility are reported in this paper. The second critical function is the grating wheel which positions the 6 cross disperser gratings into the beam. The paper describes the design of the mechanism which includes a detente system in order to guaranty the 5 arc sec positioning reproducibility requested. The design includes also feedback system, based on switches, in order to ensure that the right grating is in position before starting a long exposure. The paper reports on the tests carried out at cryogenic temperature at the sub-system level. It also includes early performances recorded in the instrument along the first phases of the system test

    The "+" for CRIRES: enabling better science at infrared wavelength and high spectral resolution at the ESO VLT

    Get PDF
    The adaptive optics (AO) assisted CRIRES instrument is an IR (0.92 - 5.2 μm) high-resolution spectrograph was in operation from 2006 to 2014 at the Very Large Telescope (VLT) observatory. CRIRES was a unique instrument, accessing a parameter space (wavelength range and spectral resolution) up to now largely uncharted. It consisted of a single-order spectrograph providing long-slit (40 arcsecond) spectroscopy with a resolving power up to R=100 000. However the setup was limited to a narrow, single-shot, spectral range of about 1/70 of the central wavelength, resulting in low observing efficiency for many scientific programmes requiring a broad spectral coverage. The CRIRES upgrade project, CRIRES+, transforms this VLT instrument into a cross-dispersed spectrograph to increase the simultaneously covered wavelength range by a factor of ten. A new and larger detector focal plane array of three Hawaii 2RG detectors with 5.3 μm cut-off wavelength will replace the existing detectors. For advanced wavelength calibration, custom-made absorption gas cells and an etalon system will be added. A spectro-polarimetric unit will allow the recording of circular and linear polarized spectra. This upgrade will be supported by dedicated data reduction software allowing the community to take full advantage of the new capabilities offered by CRIRES+. CRIRES+ has now entered its assembly and integration phase and will return with all new capabilities by the beginning of 2018 to the Very Large Telescope in Chile. This article will provide the reader with an update of the current status of the instrument as well as the remaining steps until final installation at the Paranal Observatory

    The E-ELT first light spectrograph HARMONI: capabilities and modes

    Get PDF
    Trabajo presentado en SPIE Astronomical Telescopes, celebrado en San Diego (California), del 26 de junio al 1 de julio de 2016HARMONI is the E-ELT's first light visible and near-infrared integral field spectrograph. It will provide four different spatial scales, ranging from coarse spaxels of 60 × 30 mas best suited for seeing limited observations, to 4 mas spaxels that Nyquist sample the diffraction limited point spread function of the E-ELT at near-infrared wavelengths. Each spaxel scale may be combined with eleven spectral settings, that provide a range of spectral resolving powers (R 3500, 7500 and 20000) and instantaneous wavelength coverage spanning the 0.5 - 2.4 ¿m wavelength range of the instrument. In autumn 2015, the HARMONI project started the Preliminary Design Phase, following signature of the contract to design, build, test and commission the instrument, signed between the European Southern Observatory and the UK Science and Technology Facilities Council. Crucially, the contract also includes the preliminary design of the HARMONI Laser Tomographic Adaptive Optics system. The instrument's technical specifications were finalized in the period leading up to contract signature. In this paper, we report on the first activity carried out during preliminary design, defining the baseline architecture for the system, and the trade-off studies leading up to the choice of baseline

    A unique infrared spectropolarimetric unit for CRIRES+

    Get PDF
    High-resolution infrared spectropolarimetry has many science applications in astrophysics. One of them is measuring weak magnetic fields using the Zeeman effect. Infrared domain is particularly advantageous as Zeeman splitting of spectral lines is proportional to the square of the wavelength while the intrinsic width of the line cores increases only linearly. Important science cases include detection and monitoring of global magnetic fields on solar-type stars, study of the magnetic field evolution from stellar formation to the final stages of the stellar life with massive stellar winds, and the dynamo mechanism operation across the boundary between fully- and partially-convective stars. CRIRES+ (the CRIRES upgrade project) includes a novel spectropolarimetric unit (SPU) based on polar- ization gratings. The novel design allows to perform beam-splitting very early in the optical path, directly after the tertiary mirror of the telescope (the ESO Very Large Telescope, VLT), minimizing instrumental polariza- tion. The new SPU performs polarization beam-splitting in the near-infrared while keeping the telescope beam mostly unchanged in the optical domain, making it compatible with the adaptive optics system of the CRIRES+ instrument. The SPU consists of four beam-splitters optimized for measuring circular and linear polarization of spectral lines in YJ and HK bands. The SPU can perform beam switching allowing to correct for throughput in each beam and for variations in detector pixel sensitivity. Other new features of CRIRES+, such as substantially increased wavelength coverage, stability and advanced data reduction pipeline will further enhance the sensitivity of the polarimetric mode. The combination of the SPU, CRIRES+ and the VLT is a unique facility for making major progress in understanding stellar activity. In this article we present the design of the SPU, laboratory measurements of individual components and of the whole unit as well as the performance prediction for the operation at the VLT
    corecore