12 research outputs found

    Amino acid metabolism is significantly altered at the time of admission in hospital for severe COVID-19 patients: findings from longitudinal targeted metabolomics analysis

    Get PDF
    The heterogeneity in severity and outcome of COVID-19 cases points out the urgent need for early molecular characterization of patients followed by risk-stratified care. The main objective of this study was to evaluate the fluctuations of serum metabolomic profiles of COVID-19 patients with severe illness during the different disease stages in a longitudinal manner. We demonstrate a distinct metabolomic signature in serum samples of 32 hospitalized patients at the acute phase compared to the recovery period, suggesting the tryptophan (tryptophan, kynurenine, and 3-hydroxy-DL-kynurenine) and arginine (citrulline and ornithine) metabolism as contributing pathways in the immune response to SARS-CoV-2 with a potential link to the clinical severity of the disease. In addition, we suggest that glutamine deprivation may further result in inhibited M2 macrophage polarization as a complementary process, and highlight the contribution of phenylalanine and tyrosine in the molecular mechanisms underlying the severe course of the infection. In conclusion, our results provide several functional metabolic markers for disease progression and severe outcome with potential clinical application. IMPORTANCE Although the host defense mechanisms against SARS-CoV-2 infection are still poorly described, they are of central importance in shaping the course of the disease and the possible outcome. Metabolomic profiling may complement the lacking knowledge of the molecular mechanisms underlying clinical manifestations and pathogenesis of COVID-19. Moreover, early identification of metabolomics-based biomarker signatures is proved to serve as an effective approach for the prediction of disease outcome. Here we provide the list of metabolites describing the severe, acute phase of the infection and bring the evidence of crucial metabolic pathways linked to aggressive immune responses. Finally, we suggest metabolomic phenotyping as a promising method for developing personalized care strategies in COVID-19 patients.publishersversionPeer reviewe

    Significantly altered peripheral blood cell DNA methylation profile as a result of immediate effect of metformin use in healthy individuals

    Get PDF
    Funding Information: The work was supported by the European Regional Development Fund under the project “Investigation of interplay between multiple determinants influencing response to metformin: search for reliable predictors for efficacy of type 2 diabetes therapy” (Project Nr.: 1.1.1.1/16/A/091). Publisher Copyright: © 2018 The Author(s).Background: Metformin is a widely prescribed antihyperglycemic agent that has been also associated with multiple therapeutic effects in various diseases, including several types of malignancies. There is growing evidence regarding the contribution of the epigenetic mechanisms in reaching metformin's therapeutic goals; however, the effect of metformin on human cells in vivo is not comprehensively studied. The aim of our study was to examine metformin-induced alterations of DNA methylation profiles in white blood cells of healthy volunteers, employing a longitudinal study design. Results: Twelve healthy metformin-naïve individuals where enrolled in the study. Genome-wide DNA methylation pattern was estimated at baseline, 10 h and 7 days after the start of metformin administration. The whole-genome DNA methylation analysis in total revealed 125 differentially methylated CpGs, of which 11 CpGs and their associated genes with the most consistent changes in the DNA methylation profile were selected: POFUT2, CAMKK1, EML3, KIAA1614, UPF1, MUC4, LOC727982, SIX3, ADAM8, SNORD12B, VPS8, and several differentially methylated regions as novel potential epigenetic targets of metformin. The main functions of the majority of top-ranked differentially methylated loci and their representative cell signaling pathways were linked to the well-known metformin therapy targets: regulatory processes of energy homeostasis, inflammatory responses, tumorigenesis, and neurodegenerative diseases. Conclusions: Here we demonstrate for the first time the immediate effect of short-term metformin administration at therapeutic doses on epigenetic regulation in human white blood cells. These findings suggest the DNA methylation process as one of the mechanisms involved in the action of metformin, thereby revealing novel targets and directions of the molecular mechanisms underlying the various beneficial effects of metformin. Trial registration: EU Clinical Trials Register, 2016-001092-74. Registered 23 March 2017, https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-001092-74/LV.Peer reviewe

    Medication for Acromegaly Reduces Expression of MUC16, MACC1 and GRHL2 in Pituitary Neuroendocrine Tumour Tissue

    Get PDF
    Funding Information: The authors acknowledge the Latvian Biomedical Research and Study Centre and the Genome Database of the Latvian Population for providing the infrastructure, biological material, and data. Publisher Copyright: © Copyright © 2021 Saksis, Silamikelis, Laksa, Megnis, Peculis, Mandrika, Rogoza, Petrovska, Balcere, Konrade, Steina, Stukens, Breiksa, Nazarovs, Sokolovska, Pirags, Klovins and Rovite.Acromegaly is a disease mainly caused by pituitary neuroendocrine tumor (PitNET) overproducing growth hormone. First-line medication for this condition is the use of somatostatin analogs (SSAs), that decrease tumor mass and induce antiproliferative effects on PitNET cells. Dopamine agonists (DAs) can also be used if SSA treatment is not effective. This study aimed to determine differences in transcriptome signatures induced by SSA/DA therapy in PitNET tissue. We selected tumor tissue from twelve patients with somatotropinomas, with half of the patients receiving SSA/DA treatment before surgery and the other half treatment naive. Transcriptome sequencing was then carried out to identify differentially expressed genes (DEGs) and their protein–protein interactions, using pathway analyses. We found 34 upregulated and six downregulated DEGs in patients with SSA/DA treatment. Three tumor development promoting factors MUC16, MACC1, and GRHL2, were significantly downregulated in therapy administered PitNET tissue; this finding was supported by functional studies in GH3 cells. Protein–protein interactions and pathway analyses revealed extracellular matrix involvement in the antiproliferative effects of this type of the drug treatment, with pronounced alterations in collagen regulation. Here, we have demonstrated that somatotropinomas can be distinguished based on their transcriptional profiles following SSA/DA therapy, and SSA/DA treatment does indeed cause changes in gene expression. Treatment with SSA/DA significantly downregulated several factors involved in tumorigenesis, including MUC16, MACC1, and GRHL2. Genes that were upregulated, however, did not have a direct influence on antiproliferative function in the PitNET cells. These findings suggested that SSA/DA treatment acted in a tumor suppressive manner and furthermore, collagen related interactions and pathways were enriched, implicating extracellular matrix involvement in this anti-tumor effect of drug treatment.publishersversionPeer reviewe

    First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity

    Get PDF
    Copyright © 2021 Zrelovs, Ustinova, Silamikelis, Birzniece, Megnis, Rovite, Freimane, Silamikele, Ansone, Pjalkovskis, Fridmanis, Vilne, Priedite, Caica, Gavars, Perminov, Storozenko, Savicka, Dimina, Dumpis and Klovins.Remaining a major healthcare concern with nearly 29 million confirmed cases worldwide at the time of writing, novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused more than 920 thousand deaths since its outbreak in China, December 2019. First case of a person testing positive for SARS-CoV-2 infection within the territory of the Republic of Latvia was registered on 2nd of March 2020, 9 days prior to the pandemic declaration by WHO. Since then, more than 277,000 tests were carried out confirming a total of 1,464 cases of coronavirus disease 2019 (COVID-19) in the country as of 12th of September 2020. Rapidly reacting to the spread of the infection, an ongoing sequencing campaign was started mid-March in collaboration with the local testing laboratories, with an ultimate goal in sequencing as much local viral isolates as possible, resulting in first full-length SARS-CoV-2 isolate genome sequences from the Baltics region being made publicly available in early April. With 133 viral isolates representing ~9.1% of the total COVID-19 cases during the "first coronavirus wave" in the country (early March, 2020-mid-September, 2020) being completely sequenced as of today, here, we provide a first report on the genetic diversity of Latvian SARS-CoV-2 isolates.publishersversionPeer reviewe

    Metformin strongly affects transcriptome of peripheral blood cells in healthy individuals

    Get PDF
    Funding Information: The study was supported by the European Regional Development Fund under the project ?Investigation of interplay between multiple determinants influencing response to metformin: search for reliable predictors for efficacy of type 2 diabetes therapy? (Project No.: 1.1.1.1/16/A/091, https://ec.europa.eu/regional_policy/en/funding/ erdf/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would like to thank all the volunteers for their participation and acknowledge the Genome Database of the Latvian Population for providing biological material and data. Publisher Copyright: © 2019 Ustinova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Metformin is a commonly used antihyperglycaemic agent for the treatment of type 2 diabetes mellitus. Nevertheless, the exact mechanisms of action, underlying the various therapeutic effects of metformin, remain elusive. The goal of this study was to evaluate the alterations in longitudinal whole-blood transcriptome profiles of healthy individuals after a one-week metformin intervention in order to identify the novel molecular targets and further prompt the discovery of predictive biomarkers of metformin response. Next generation sequencing-based transcriptome analysis revealed metformin-induced differential expression of genes involved in intestinal immune network for IgA production and cytokine-cytokine receptor interaction pathways. Significantly elevated faecal sIgA levels during administration of metformin, and its correlation with the expression of genes associated with immune response (CXCR4, HLA-DQA1, MAP3K14, TNFRSF21, CCL4, ACVR1B, PF4, EPOR, CXCL8) supports a novel hypothesis of strong association between metformin and intestinal immune system, and for the first time provide evidence for altered RNA expression as a contributing mechanism of metformin’s action. In addition to universal effects, 4 clusters of functionally related genes with a subject-specific differential expression were distinguished, including genes relevant to insulin production (HNF1B, HNF1A, HNF4A, GCK, INS, NEUROD1, PAX4, PDX1, ABCC8, KCNJ11) and cholesterol homeostasis (APOB, LDLR, PCSK9). This inter-individual variation of the metformin effect on the transcriptional regulation goes in line with well-known variability of the therapeutic response to the drug.publishersversionPeer reviewe

    Ryegrass mottle virus complete genome determination and development of infectious cDNA by combining two methods- 3' RACE and RNA-Seq.

    No full text
    Ryegrass mottle virus (RGMoV; genus: Sobemovirus) is a single-stranded positive RNA virus with a 30 nm viral particle size. It exhibits T = 3 symmetry with 180 coat protein (CP) subunits forming a viral structure. The RGMoV genome comprises five open reading frames that encode P1, Px, a membrane-anchored 3C-like serine protease, a viral genome-linked protein, P16, an RNA-dependent RNA polymerase, and CP. The RGMoV genome size varies, ranging from 4175 nt (MW411579.1) to 4253 nt (MW411579.1) in the deposited sequences. An earlier deposited RGMoV complete genome sequence of 4212 nt length (EF091714.1) was used to develop an infectious complementary DNA (icDNA) construct for in vitro gRNA transcription from the T7 promoter. However, viral infection was not induced when the transcribed gRNA was introduced into oat plants, indicating the potential absence of certain sequences in either the 5' or 3' untranslated regions (UTR) or both. The complete sequence of the 3' UTR was determined through 3' end RACE, while the 5' UTR was identified using high-throughput sequencing (HTS)-RNA-Seq to resolve the potential absences. Only the icDNA vector containing the newly identified UTR sequences proved infectious, resulting in typical viral infection symptoms and subsequent propagation of progeny viruses, exhibiting the ability to cause repeated infections in oat plants after at least one passage. The successful generation of icDNA highlighted the synergistic potential of utilizing both methods when a single approach failed. Furthermore, this study demonstrated the reliability of HTS as a method for determining the complete genome sequence of viral genomes

    Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults

    No full text
    The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism

    Association of metformin administration with gut microbiome dysbiosis in healthy volunteers.

    No full text
    BACKGROUND:Metformin is a widely used first-line drug for treatment of type 2 diabetes. Despite its advantages, metformin has variable therapeutic effects, contraindications, and side effects. Here, for the very first time, we investigate the short-term effect of metformin on the composition of healthy human gut microbiota. METHODS:We used an exploratory longitudinal study design in which the first sample from an individual was the control for further samples. Eighteen healthy individuals were treated with metformin (2 × 850 mg) for 7 days. Stool samples were collected at three time points: prior to administration, 24 hours and 7 days after metformin administration. Taxonomic composition of the gut microbiome was analyzed by massive parallel sequencing of 16S rRNA gene (V3 region). RESULTS:There was a significant reduction of inner diversity of gut microbiota observed already 24 hours after metformin administration. We observed an association between the severity of gastrointestinal side effects and the increase in relative abundance of common gut opportunistic pathogen Escherichia-Shigella spp. One week long treatment with metformin was associated with a significant decrease in the families Peptostreptococcaceae and Clostridiaceae_1 and four genera within these families. CONCLUSIONS:Our results are in line with previous findings on the capability of metformin to influence gut microbiota. However, for the first time we provide evidence that metformin has an immediate effect on the gut microbiome in humans. It is likely that this effect results from the increase in abundance of opportunistic pathogens and further triggers the occurrence of side effects associated with the observed dysbiosis. An additional randomized controlled trial would be required in order to reach definitive conclusions, as this is an exploratory study without a placebo control arm. Our findings may be further used to create approaches that improve the tolerability of metformin
    corecore