13,209 research outputs found

    Low-emissivity impact craters on Venus

    Get PDF
    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles

    Self-consistent Approach to Off-Shell Transport

    Full text link
    The properties of two forms of the gradient expanded Kadanoff--Baym equations, i.e. the Kadanoff--Baym and Botermans-Malfliet forms, suitable to describe the transport dynamics of particles and resonances with broad spectral widths, are discussed in context of conservation laws, the definition of a kinetic entropy and the possibility of numerical realization. Recent results on exact conservations of charge and energy-momentum within Kadanoff-Baym form of quantum kinetics based on local coupling schemes are extended to two cases relevant in many applications. These concern the interaction via a finite range potential, and, relevant in nuclear and hadron physics, e.g. for the pion--nucleon interaction, the case of derivative coupling.Comment: 35 pages, submitted to issue of Phys. Atom. Nucl. dedicated to S.T. Belyaev on the occasion of his 80th birthday. Few references are adde

    Renormalization of Self-consistent Approximation schemes Finite Temperature II: Applications to the Sunset Diagram

    Full text link
    The theoretical concepts for the renormalization of self-consistent Dyson resummations, deviced in the first paper of this series, are applied to first example cases for the ϕ4\phi^4-theory. Besides the tadpole (Hartree) approximation as a novel part the numerical solutions are presented which includes the sunset self-energy diagram into the self-consistent scheme based on the Φ\Phi-derivable approximation or 2PI effective action concept.Comment: 18 pages, 7 figures Changes in version 2: Adapted title to the first paper of the series, added one figure and some references. This version was submitted to Phys. Rev. D; Changes in version 3: added one more reference Changes in version 4 (accepted for publication by Phys. Rev. D): Added a paragraph about the massless case and some remarks in the introductio

    Similar zone-center gaps in the low-energy spin-wave spectra of NaFeAs and BaFe2As2

    Full text link
    We report results of inelastic-neutron-scattering measurements of low-energy spin-wave excitations in two structurally distinct families of iron-pnictide parent compounds: Na(1-{\delta})FeAs and BaFe2As2. Despite their very different values of the ordered magnetic moment and N\'eel temperatures, T_N, in the antiferromagnetic state both compounds exhibit similar spin gaps of the order of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below T_N, with no signatures of a precursor gap at temperatures between the orthorhombic and magnetic phase transitions in Na(1-{\delta})FeAs. We also find a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0), spin excitations in the ordered state persist down to 20 meV, which implies a much smaller value of the effective out-of-plane exchange interaction, J_c, as compared to previous estimates based on fitting the high-energy spin-wave dispersion to a Heisenberg-type model.Comment: 5 pages, 4 figures, 1 tabl

    Higgs mode and its decay in a two dimensional antiferromagnet

    Full text link
    Condensed-matter analogs of the Higgs boson in particle physics allow insights into its behavior in different symmetries and dimensionalities. Evidence for the Higgs mode has been reported in a number of different settings, including ultracold atomic gases, disordered superconductors, and dimerized quantum magnets. However, decay processes of the Higgs mode (which are eminently important in particle physics) have not yet been studied in condensed matter due to the lack of a suitable material system coupled to a direct experimental probe. A quantitative understanding of these processes is particularly important for low-dimensional systems where the Higgs mode decays rapidly and has remained elusive to most experimental probes. Here, we discover and study the Higgs mode in a two-dimensional antiferromagnet using spin-polarized inelastic neutron scattering. Our spin-wave spectra of Ca2_2RuO4_4 directly reveal a well-defined, dispersive Higgs mode, which quickly decays into transverse Goldstone modes at the antiferromagnetic ordering wavevector. Through a complete mapping of the transverse modes in the reciprocal space, we uniquely specify the minimal model Hamiltonian and describe the decay process. We thus establish a novel condensed matter platform for research on the dynamics of the Higgs mode.Comment: original submitted version, Nature Physics (2017). arXiv admin note: substantial text overlap with arXiv:1510.0701

    sl(N) Onsager's Algebra and Integrability

    Get PDF
    We define an sl(N) sl(N) analog of Onsager's Algebra through a finite set of relations that generalize the Dolan Grady defining relations for the original Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be isomorphic to a fixed point subalgebra of sl(N) sl(N) Loop Algebra with respect to a certain involution. As the consequence of the generalized Dolan Grady relations a Hamiltonian linear in the generators of sl(N) sl(N) Onsager's Algebra is shown to posses an infinite number of mutually commuting integrals of motion

    On the polarization properties of the charmed baryon Lambda^+_c in the Lambda^+_c -> p + K^- + pi^+ + pi^0 decay

    Full text link
    The polarization properties of the charmed Lambda^+_c baryon are investigated in weak non-leptonic four-body Lambda^+_c -> p + K^- + pi^+ + pi^0 decay. The probability of this decay and the angular distribution of the probability are calculated in the effective quark model with chiral U(3)XU(3) symmetry incorporating Heavy Quark Effective theory (HQET) and the extended Nambu-Jona-Lasinio model with a linear realization of chiral U(3)XU(3) symmetry. The theoretical value of the probability of the decay Lambda^+_c -> p + K^- + pi^+ + pi^0 relative to the probability of the decay Lambda^+_c -> p + K^- + pi^+ does not contain free parameters and fits well experimental data. The application of the obtained results to the analysis of the polarization of the Lambda^+_c produced in the processes of photo and hadroproduction is discussed.Comment: 10 pages, no figures, Late

    Magnetic Resonant Mode in the Low-Energy Spin-Excitation Spectrum of Superconducting Rb2Fe4Se5 Single Crystals

    Full text link
    We have studied the low-energy spin-excitation spectrum of the single-crystalline Rb2Fe4Se5 superconductor (Tc = 32 K) by means of inelastic neutron scattering. In the superconducting state, we observe a magnetic resonant mode centered at an energy of 14 meV and at the (0.5 0.25 0.5) wave vector (unfolded Fe-sublattice notation), which differs from the ones characterizing magnetic resonant modes in other iron-based superconductors. Our finding suggests that the 245-iron-selenides are unconventional superconductors with a sign-changing order parameter, in which bulk superconductivity coexists with the sqrt(5) x sqrt(5) magnetic superstructure. The estimated ratios of the resonance energy to Tc and the superconducting gap indicate moderate pairing strength in this compound, similar to that in optimally doped 1111- and 122-pnictides.Comment: To be published in Phys. Rev. Lett. Figures and references have been updated in v
    corecore