725 research outputs found

    Bulk viscosity of strange quark matter: Urca versus non-leptonic processes

    Full text link
    A general formalism for calculating the bulk viscosity of strange quark matter is developed. Contrary to the common belief that the non-leptonic processes alone give the dominant contribution to the bulk viscosity, the inclusion of the Urca processes is shown to play an important role at intermediate densities when the characteristic r-mode oscillation frequencies are not too high. The interplay of non-leptonic and Urca processes is analyzed in detailComment: 9 pages, 4 figures, v2: revised figures, no change in result

    Cosmological constant and Euclidean space from nonperturbative quantum torsion

    Full text link
    Heisenberg's nonperturbative quantization technique is applied to the nonpertrubative quantization of gravity. An infinite set of equations for all Green's functions is obtained. An approximation is considered where: (a) the metric remains as a classical field; (b) the affine connection can be decomposed into classical and quantum parts; (c) the classical part of the affine connection are the Christoffel symbols; (d) the quantum part is the torsion. Using a scalar and vector fields approximation it is shown that nonperturbative quantum effects gives rise to a cosmological constant and an Euclidean solution.Comment: title is changed. arXiv admin note: text overlap with arXiv:1201.106

    The Kerr theorem and multiparticle Kerr-Schild solutions

    Full text link
    We discuss and prove an extended version of the Kerr theorem which allows one to construct exact solutions of the Einstein-Maxwell field equations from a holomorphic generating function FF of twistor variables. The exact multiparticle Kerr-Schild solutions are obtained from generating function of the form F=ikFi,F=\prod_i^k F_i, where FiF_i are partial generating functions for the spinning particles i=1...k i=1...k. Solutions have an unusual multi-sheeted structure. Twistorial structures of the i-th and j-th particles do not feel each other, forming a type of its internal space. Gravitational and electromagnetic interaction of the particles occurs via the light-like singular twistor lines. As a result, each particle turns out to be `dressed' by singular pp-strings connecting it to other particles. We argue that this solution may have a relation to quantum theory and to quantum gravity.Comment: 13 pages, 4 figures, revtex. Expressions for electromagnetic field are correcte

    Pseudoscalar Goldstone bosons in the color-flavor locked phase at moderate densities

    Full text link
    The properties of the pseudoscalar Goldstone bosons in the color-flavor locked phase at moderate densities are studied within a model of the Nambu--Jona-Lasinio type. The Goldstone bosons are constructed explicitly by solving the Bethe-Salpeter equation for quark-quark scattering in random phase approximation. Main focus of our investigations are (i) the weak decay constant in the chiral limit, (ii) the masses of the flavored (pseudo-) Goldstone bosons for non-zero but equal quark masses, (iii) their masses and effective chemical potentials for non-equal quark masses, and (iv) the onset of kaon condensation. We compare our results with the predictions of the low-energy effective field theory. The deviations from results obtained in the weak-coupling limit are discussed in detail.Comment: 18 pages, 12 figure

    Nonlinear Realization of the Local Conform-Affine Symmetry Group for Gravity in the Composite Fiber Bundle Formalism

    Full text link
    A gauge theory of gravity based on a nonlinear realization (NLR) of the local Conform-Affine (CA) group of symmetry transformations is presented. The coframe fields and gauge connections of the theory are obtained. The tetrads and Lorentz group metric are used to induce a spacetime metric. The inhomogenously transforming (under the Lorentz group) connection coefficients serve as gravitational gauge potentials used to define covariant derivatives accommodating minimal coupling of matter and gauge fields. On the other hand, the tensor valued connection forms serve as auxillary dynamical fields associated with the dilation, special conformal and deformational (shear) degrees of freedom inherent in the bundle manifold. The bundle curvature of the theory is determined. Boundary topological invariants are constructed. They serve as a prototype (source free) gravitational Lagrangian. The Bianchi identities, covariant field equations and gauge currents are obtained.Comment: 24 pages. to appear in IJGMM

    Color-flavor locked superconductor in a magnetic field

    Full text link
    We study the effects of moderately strong magnetic fields on the properties of color-flavor locked color superconducting quark matter in the framework of the Nambu-Jona-Lasinio model. We find that the energy gaps, which describe the color superconducting pairing as well as the magnetization, are oscillating functions of the magnetic field. Also, we observe that the oscillations of the magnetization can be so strong that homogeneous quark matter becomes metastable for a range of parameters. We suggest that this points to the possibility of magnetic domains or other types of magnetic inhomogeneities in the quark cores of magnetars.Comment: 12 pages, 3 figures. Version accepted for publication in Phys. Rev.

    Absence of the London limit for the first-order phase transition to a color superconductor

    Full text link
    We study the effects of gauge-field fluctuations on the free energy of a homogeneous color superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order phase transition, in contrast to electronic superconductors where this transition is weakly first order. The critical temperature for this transition is larger than the one corresponding to the diquark pairing instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations as compared to the normal conducting phase where gluons are massless, which stabilizes the superconducting phase. In weak coupling, we analytically compute the temperatures associated with the limits of metastability of the normal and superconducting phases, as well as the latent heat associated with the first-order phase transition. We then extrapolate our results to intermediate densities and numerically evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is absent in color superconductivity.Comment: 14 pages, 5 figure
    corecore