155 research outputs found

    Evaluation of the Allergenicity Potential of TcPR-10 Protein from Theobroma cacao

    Get PDF
    Background: The pathogenesis related protein PR10 (TcPR-10), obtained from the Theobroma cacao-Moniliophthora perniciosa interaction library, presents antifungal activity against M. perniciosa and acts in vitro as a ribonuclease. However, despite its biotechnological potential, the TcPR-10 has the P-loop motif similar to those of some allergenic proteins such as Bet v 1 (Betula verrucosa) and Pru av 1 (Prunus avium). The insertion of mutations in this motif can produce proteins with reduced allergenic power. The objective of the present work was to evaluate the allergenic potential of the wild type and mutant recombinant TcPR-10 using bioinformatics tools and immunological assays. Methodology/Principal Findings: Mutant substitutions (T10P, I30V, H45S) were inserted in the TcPR-10 gene by sitedirected mutagenesis, cloned into pET28a and expressed in Escherichia coli BL21(DE3) cells. Changes in molecular surface caused by the mutant substitutions was evaluated by comparative protein modeling using the three-dimensional structure of the major cherry allergen, Pru av 1 as a template. The immunological assays were carried out in 8-12 week old female BALB/c mice. The mice were sensitized with the proteins (wild type and mutants) via subcutaneous and challenged intranasal for induction of allergic airway inflammation. Conclusions/Significance: We showed that the wild TcPR-10 protein has allergenic potential, whereas the insertion of mutations produced proteins with reduced capacity of IgE production and cellular infiltration in the lungs. On the other hand, in vitro assays show that the TcPR-10 mutants still present antifungal and ribonuclease activity against M. perniciosa RNA. In conclusion, the mutant proteins present less allergenic potential than the wild TcPR-10, without the loss of interesting biotechnological properties. (Résumé d'auteur

    ANN multiscale model of anti-HIV Drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks

    Get PDF
    [Abstract] This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.Ministerio de Educación, Cultura y Deportes; AGL2011-30563-C03-0

    New Polynomial-Based Molecular Descriptors with Low Degeneracy

    Get PDF
    In this paper, we introduce a novel graph polynomial called the ‘information polynomial’ of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power

    In silico approach to screen compounds active against parasitic nematodes of major socio-economic importance

    Get PDF
    Infections due to parasitic nematodes are common causes of morbidity and fatality around the world especially in developing nations. At present however, there are only three major classes of drugs for treating human nematode infections. Additionally the scientific knowledge on the mechanism of action and the reason for the resistance to these drugs is poorly understood. Commercial incentives to design drugs that are endemic to developing countries are limited therefore, virtual screening in academic settings can play a vital role is discovering novel drugs useful against neglected diseases. In this study we propose to build robust machine learning model to classify and screen compounds active against parasitic nematodes.A set of compounds active against parasitic nematodes were collated from various literature sources including PubChem while the inactive set was derived from DrugBank database. The support vector machine (SVM) algorithm was used for model development, and stratified ten-fold cross validation was used to evaluate the performance of each classifier. The best results were obtained using the radial basis function kernel. The SVM method achieved an accuracy of 81.79% on an independent test set. Using the model developed above, we were able to indentify novel compounds with potential anthelmintic activity.In this study, we successfully present the SVM approach for predicting compounds active against parasitic nematodes which suggests the effectiveness of computational approaches for antiparasitic drug discovery. Although, the accuracy obtained is lower than the previously reported in a similar study but we believe that our model is more robust because we intentionally employed stringent criteria to select inactive dataset thus making it difficult for the model to classify compounds. The method presents an alternative approach to the existing traditional methods and may be useful for predicting hitherto novel anthelmintic compounds.12 page(s

    Predicting Phospholipidosis Using Machine Learning

    Get PDF
    Phospholipidosis is an adverse effect caused by numerous cationic amphiphilic drugs and can affect many cell types. It is characterized by the excess accumulation of phospholipids and is most reliably identified by electron microscopy of cells revealing the presence of lamellar inclusion bodies. The development of phospholipidosis can cause a delay in the drug development process, and the importance of computational approaches to the problem has been well documented. Previous work on predictive methods for phospholipidosis showed that state of the art machine learning methods produced the best results. Here we extend this work by looking at a larger data set mined from the literature. We find that circular fingerprints lead to better models than either E-Dragon descriptors or a combination of the two. We also observe very similar performance in general between Random Forest and Support Vector Machine models.</p

    Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors

    Get PDF
    [Abstract] The use of numerical parameters in Complex Network analysis is expanding to new fields of application. At a molecular level, we can use them to describe the molecular structure of chemical entities, protein interactions, or metabolic networks. However, the applications are not restricted to the world of molecules and can be extended to the study of macroscopic nonliving systems, organisms, or even legal or social networks. On the other hand, the development of the field of Artificial Intelligence has led to the formulation of computational algorithms whose design is based on the structure and functioning of networks of biological neurons. These algorithms, called Artificial Neural Networks (ANNs), can be useful for the study of complex networks, since the numerical parameters that encode information of the network (for example centralities/node descriptors) can be used as inputs for the ANNs. The Wiener index (W) is a graph invariant widely used in chemoinformatics to quantify the molecular structure of drugs and to study complex networks. In this work, we explore for the first time the possibility of using Markov chains to calculate analogues of node distance numbers/W to describe complex networks from the point of view of their nodes. These parameters are called Markov-Wiener node descriptors of order kth (Wk). Please, note that these descriptors are not related to Markov-Wiener stochastic processes. Here, we calculated the Wk(i) values for a very high number of nodes (>100,000) in more than 100 different complex networks using the software MI-NODES. These networks were grouped according to the field of application. Molecular networks include the Metabolic Reaction Networks (MRNs) of 40 different organisms. In addition, we analyzed other biological and legal and social networks. These include the Interaction Web Database Biological Networks (IWDBNs), with 75 food webs or ecological systems and the Spanish Financial Law Network (SFLN). The calculated Wk(i) values were used as inputs for different ANNs in order to discriminate correct node connectivity patterns from incorrect random patterns. The MIANN models obtained present good values of Sensitivity/Specificity (%): MRNs (78/78), IWDBNs (90/88), and SFLN (86/84). These preliminary results are very promising from the point of view of a first exploratory study and suggest that the use of these models could be extended to the high-throughput re-evaluation of connectivity in known complex networks (collation)

    Suggested Improvements for the Allergenicity Assessment of Genetically Modified Plants Used in Foods

    Get PDF
    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    2015/16 seasonal vaccine effectiveness against hospitalisation with influenza a(H1N1)pdm09 and B among elderly people in Europe: Results from the I-MOVE+ project

    Get PDF
    We conducted a multicentre test-negative caseâ\u80\u93control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged â\u89¥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases
    corecore