25 research outputs found

    Spin modulation instabilities and phase separation dynamics in trapped two-component Bose condensates

    Get PDF
    In the study of trapped two-component Bose gases, a widely used dynamical protocol is to start from the ground state of a one-component condensate and then switch half the atoms into another hyperfine state. The slightly different intra-component and inter-component interactions can then lead to highly non-trivial dynamics, especially in the density mismatch between the two components, commonly referred to as 'spin' density. We study and classify the possible subsequent dynamics, over a wide variety of parameters spanned by the trap strength and by the inter- to intra-component interaction ratio. A stability analysis suited to the trapped situation provides us with a framework to explain the various types of dynamics in different regimes

    SPEEDUP Code for Calculation of Transition Amplitudes via the Effective Action Approach

    Full text link
    We present Path Integral Monte Carlo C code for calculation of quantum mechanical transition amplitudes for 1D models. The SPEEDUP C code is based on the use of higher-order short-time effective actions and implemented to the maximal order pp=18 in the time of propagation (Monte Carlo time step), which substantially improves the convergence of discretized amplitudes to their exact continuum values. Symbolic derivation of higher-order effective actions is implemented in SPEEDUP Mathematica codes, using the recursive Schroedinger equation approach. In addition to the general 1D quantum theory, developed Mathematica codes are capable of calculating effective actions for specific models, for general 2D and 3D potentials, as well as for a general many-body theory in arbitrary number of spatial dimensions.Comment: 17 pages, 3 figures, uses cicp.cl

    C programs for solving the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    Full text link
    We present C programming language versions of earlier published Fortran programs (Muruganandam and Adhikari, Comput. Phys. Commun. 180 (2009) 1888) for calculating both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation. The GP equation describes the properties of dilute Bose-Einstein condensates at ultra-cold temperatures. C versions of programs use the same algorithms as the Fortran ones, involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation, we consider the one-dimensional, two-dimensional, circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form, we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. In addition to these twelve programs, for six algorithms that involve two and three space variables, we have also developed threaded (OpenMP parallelized) programs, which allow numerical simulations to use all available CPU cores on a computer. All 18 programs are optimized and accompanied by makefiles for several popular C compilers. We present typical results for scalability of threaded codes and demonstrate almost linear speedup obtained with the new programs, allowing a decrease in execution times by an order of magnitude on modern multi-core computers.Comment: 8 pages, 1 figure; 18 C programs included (to download, click other and download the source

    Buckling and post-buckling behavior of shell type structures under thermo mechanical loads

    Get PDF
    The thermo mechanical buckling and post-buckling behavior of layered composite shell type structure are considered with the finite element method under the combination of temperature load and applied mechanical loads. To account for through-thickness shear deformation effects, the thermal elastic, and higher-order shear deformation theory is used in this study. The refined higher order theories, that takes into account the effect of transverse normal deformation, is used to develop discrete finite element models for the thermal buckling analysis of composite laminates. Attention in this study is focused on analyzing the temperature effects on buckling and post-buckling behavior of thin shell structural components. Special attention in this paper is focused on studying of values of the hole in curved panel on thermal buckling behavior and consequently to expend and upgrade previously conducted investigation. Using finite element method, a broader observation of the critical temperature of loss of stability depending on the size of the hole was conducted. The presented numerical results based on higher-order shear deformation theory can be used as versatile and accurate method for buckling and post-buckling analyzes of thin-walled laminated plates under thermo mechanical loads

    Buckling and post-buckling behavior of shell type structures under thermo mechanical loads

    Get PDF
    The thermo mechanical buckling and post-buckling behavior of layered composite shell type structure are considered with the finite element method under the combination of temperature load and applied mechanical loads. To account for through-thickness shear deformation effects, the thermal elastic, and higher-order shear deformation theory is used in this study. The refined higher order theories, that takes into account the effect of transverse normal deformation, is used to develop discrete finite element models for the thermal buckling analysis of composite laminates. Attention in this study is focused on analyzing the temperature effects on buckling and post-buckling behavior of thin shell structural components. Special attention in this paper is focused on studying of values of the hole in curved panel on thermal buckling behavior and consequently to expend and upgrade previously conducted investigation. Using finite element method, a broader observation of the critical temperature of loss of stability depending on the size of the hole was conducted. The presented numerical results based on higher-order shear deformation theory can be used as versatile and accurate method for buckling and post-buckling analyzes of thin-walled laminated plates under thermo mechanical loads

    Morphological differences of pancreatic lesions in mute swans and hens naturally infected with highly pathogenic avian influenza virus h5n8

    Get PDF
    During the epizootic of highly pathogenic avian influenza subtype H5N8 in Serbia in the winter of 2016-2017, the highest percent of mortality due to this infection was recorded in mute swans (Cygnus olor). Besides mute swans, avian influenza virus subtype H5N8 was also diagnosed in a small number of hens in rural households. Pancreatic tissues from avian influenza H5N8 positive mute swans and hens that died during this outbreak were collected to determine the character of morphological lesions and the distribution of the viral antigen in this organ. Macroscopic examination of the pancreas of mute swans revealed hemorrhages as well as necrosis, while there were no macroscopic visible lesions in the pancreas of infected hens. Despite the different macroscopic finding, microscopic examination of the pancreas of both infected bird species revealed lesions in the form of acute pancreatitis and multifocal acinar necrosis. The viral antigen was abundantly expressed in the cytoplasm and nucleus of necrotic cells, as well as in macrophages in both examined bird species. Immunohistochemical expression of the viral antigen in the pancreas was strongly consistent with histological lesions. According to the above descnbed findings, it could be concluded that highly pathogenic avian influenza virus H5N8 has a high affinity to pancreatic tissue in both mute swans and hens and the distribution and the character of the lesions in the pancreas are similar in both bird species

    Fast Converging Path Integrals for Time-Dependent Potentials I: Recursive Calculation of Short-Time Expansion of the Propagator

    Get PDF
    In this and subsequent paper arXiv:1011.5185 we develop a recursive approach for calculating the short-time expansion of the propagator for a general quantum system in a time-dependent potential to orders that have not yet been accessible before. To this end the propagator is expressed in terms of a discretized effective potential, for which we derive and analytically solve a set of efficient recursion relations. Such a discretized effective potential can be used to substantially speed up numerical Monte Carlo simulations for path integrals, or to set up various analytic approximation techniques to study properties of quantum systems in time-dependent potentials. The analytically derived results are numerically verified by treating several simple models.Comment: 29 pages, 5 figure

    Sthe role of myofibroblasts in granulomatous lymphadenitis in pigs naturally infected with M. Avium subsp. hominissuis

    Get PDF
    The most important morphological characteristic of infections caused by M. avium subsp. hominissuis (MAH) is granuloma formation. The growth of mycobacteria is in accordance with anti-bacterial effector mechanisms of the host within granuloma. The most important cytokines for „orchestrating“the host defense are interferon γ (INF-γ), tumor necrosis factor α (TNF-α) and transforming growth factor β1 (TGF-β1). Myofibroblasts that make up a peripheral layer of granuloma largely express receptors for TGF-β1. This cytokine is believed to affect the induction of myofibroblast proliferation. The aim of this paper is to point out the importance of myofibroblasts in the formation and sustainability of granuloma during natural infection of pigs with M. avium subsp. hominissuis. Examinations have been performed on the samples of Lnn. jejunales, Lnn. ileocolici and Lnn. colici of 100 pigs with a positive tuberculin skin test. The molecular method confirmed the presence of a genome M. avium subsp. hominissuis. The microscopic examination of lymph node samples stained by the routine hematoxyilin-eosin (HE) method, showed the presence of granulomatous lymphadenitis. The method of double immunohistochemical staining revealed that myofibroblasts which express TGF-β1 receptor type I (TGF-β1RI) and α smooth muscle actin (α SMA) have an important role in the morphogenesis of granulomatous lymphadenitis in pigs infected with MAH

    Higijena procesa klanja i obrade svinja tokom godinu dana na jednoj klanici u Severnobanatskom okrugu u Srbiji

    Get PDF
    During the validation and verification of HACCP system, a food business operator must use the data obtained in the regular control, whose dynamics and extent are required by actual legislation. During one year, at a cattle slaughterhouse in North Banat District (Serbia), swabs were continually taken from the carcasses of pigs, on the slaughter line after the final wash, in order to monitor compliance with the process hygiene criteria (Salmonella spp., Enterobacteriaceae, total viable count of aerobic bacteria). For 30 consecutive weeks of testing, , Salmonella spp. presence was not detected on the pig carcasses after final wash, while the determined presence of Enterobacteriaceae were 1,05 ± 0,78 log CFU/cm2, and the total viable count of aerobic bacteria were 2.87 ± 0.96 log CFU/cm2. The analysis of the obtained results proved a downward trend in Enterobacteriacae and total viable count of aerobic bacteria presence which proves the effectiveness of the new approach in the monitoring process hygiene during the production of pig carcasses, in accordance with the actual legislation.Tokom validacije i verifikacije HACCP sistema, subjekt u poslovanju hranom, treba da upotrebi podatke dobijene u redovnoj kontroli čija su dinamika i obim propisani odgovarajućom zakonskom regulativom. U periodu od godinu dana na jednoj klanici u Severnobanatskom okrugu, vršeno je plansko uzimanje briseva sa trupova svinja sa ciljem praćenja higijene procesa klanja. Ispitivanjima su bili obuhvaćeni sledeći mikroorganizmi: Enterobacteriaceae i broj aerobnih bakterija, kao i potencijalno prisustvo patogena (Salmonella spp.). Tokom 30 uzastopnih nedelja ispitivanja, na trupovima svinja nakon završnog pranja, nije utvrđeno prisustvo Salmonella spp., dok je prisustvo Enterobacteriaceae iznosilo 1,05 ± 0,78 log CFU/cm2, a ukupnog broja aerobnih bakterija 2,87 ± 0,96 log CFU/cm2. Analizom dobijenih rezultata primetan je opadajući trend nalaza Enterobacteriacae i broja aerobnih bakterija, što ukazuje na efektivnost sistema HACCP i kontrole higijene procesa klanja koja je u skladu sa aktuelnom zakonskom regulativom

    Genome sequence diversity of SARS-CoV-2 in Serbia: insights gained from a 3-year pandemic study

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19-positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest—Omicron recombinant “Kraken” (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5′-untranslated region (5’UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19- positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest—Omicron recombinant “Kraken” (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5′-untranslated region (5’UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide
    corecore