41 research outputs found

    Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    Get PDF
    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO_2 climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modest reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO_2 induced global warming

    Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations

    Get PDF
    Recent studies point to the sensitivity of mid-latitude winter climate to Arctic sea ice variability. However, there remain contradictory results in terms of character and timing of Northern Hemisphere large-scale circulation features to Arctic sea ice changes. This study assesses the impact of realistic late autumn eastern Arctic sea ice anomalies on atmospheric wintertime circulation at mid-latitudes, pointing to a hidden potential for seasonal predictability. ​Using a dynamical seasonal prediction system, an ensemble of seasonal forecast simulations of 23 historical winter seasons is run with reduced November sea ice cover in the Barents-Kara Seas, and is compared to the respective control seasonal hindcast simulations set. ​A non energy-conserving approach is adopted for achieving the desired sea ice loss, with artificial heat being added conditionally to the ocean surface heat fluxes so as to inhibit the formation of sea ice during November. Our results point to a robust atmospheric circulation response in the North Pacific sector, similar to previous findings on the multidecadal timescale. Specifically, an anticyclonic anomaly at upper and lower levels is identified over the eastern midlatitude North Pacific, leading to dry conditions over the North American southwest coast. The responses are related to a re-organization (weakening) of west-Pacific tropical convection and interactions with the tropical Hadley circulation. ​A possible interaction of the poleward-shifted Pacific eddy-driven jet stream and the Hadley cell is discussed​. ​The winter circulation response in the Euro-Atlantic sector is ephemeral in character and statistically significant in January only, corroborating previous findings of an intermittent and non-stationary Arctic sea ice-NAO link during boreal winter. These results ​aid our understanding of the seasonal impacts of reduced eastern Arctic sea ice on the midlatitude atmospheric circulation with implications for seasonal predictability in wintertime.publishedVersio

    Study of the healing process after transplantation of pasteurized bone grafts in rabbits.

    Get PDF
    Different bone allografts (pasteurized, autoclaved, and frozen) were compared based on their osteoinductive properties. Our primary purpose was to examine the biologic qualities of pasteurized allografts, as pasteurization inactivates most viruses transmitted by transplantation. Frozen, pasteurized, and autoclaved allografts were packed into a standard defect of rabbit ulna. The animals were sacrificed at 2 and 4 weeks after surgery. The parts of bones with experimental defects were explored en bloc, and a roentgenogram was carried out. Ulna bone samples were then embedded in methyl-methacrylate. Roentgenograms showed that after 2 weeks, calluses were well-formed, but irregular in shape in all 3 types of allografts. After 4 weeks, the calluses were regular in shape in all but the autoclaved grafts. After 2 weeks, the healing processes had begun in the frozen and pasteurized grafts, with the reaching approximately the same stage, while in the autoclaved grafts these processes were not seen and the bone particles were surrounded by connective tissue without any changes. After 4 weeks, osteoinductive processes were very strong, with the first signs of complete bone remodeling at the bone edges of the defect in pasteurized and frozen allografts. The osteoinductive values of these 2 types were very high and similar. Autoclaved allografts, on the other hand, had very low osteoinductive values, as they were still at the very beginning of the healing process. Histomorphometric analysis revealed a significant difference in both newly formed osteoid thickness and osteoblast number per microm of bone surface in all experimental groups (P &#60; 0.005). Values of osteoid thickness and osteoblast number were significantly higher in both frozen and pasteurized grafts when compared with the autoclaved ones (P &#60; 0.005). Osteogenic properties of pasteurized bone allografts were preserved, and the allografts have been gradually replaced with newly formed bone. As such, pasteurized bone grafts from a bone bank have approximately the same biologic validity as frozen grafts, while autoclaved grafts impair bone healing.</p

    Thinking Health-related Behaviors in a Climate Change Context:A Narrative Review

    Get PDF
    Background: Human activities have changed the environment so profoundly over the past two centuries that human-induced climate change is now posing serious health-related threats to current and future generations. Rapid action from all scientific fields, including behavioral medicine, is needed to contribute to both mitigation of, and adaption to, climate change.Purpose: This article aims to identify potential bi-directional associations between climate change impacts and health-related behaviors, as well as a set of key actions for the behavioral medicine community.Methods: We synthesized the existing literature about (i) the impacts of rising temperatures, extreme weather events, air pollution, and rising sea level on individual behaviors (e.g., eating behaviors, physical activity, sleep, substance use, and preventive care) as well as the structural factors related to these behaviors (e.g., the food system); and (ii) the concurrent positive and negative roles that health-related behaviors can play in mitigation and adaptation to climate change.Results: Based on this literature review, we propose a first conceptual model of climate change and health-related behavior feedback loops. Key actions are proposed, with particular consideration for health equity implications of future behavioral interventions. Actions to bridge the fields of behavioral medicine and climate sciences are also discussed.Conclusions: We contend that climate change is among the most urgent issues facing all scientists and should become a central priority for the behavioral medicine community.</p

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.The development of EC-Earth3 was supported by the European Union's Horizon 2020 research and innovation program under project IS-ENES3, the third phase of the distributed e-infrastructure of the European Network for Earth System Modelling (ENES) (grant agreement no. 824084, PRIMAVERA grant no. 641727, and CRESCENDO grant no. 641816). Etienne Tourigny and Raffaele Bernardello have received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement nos. 748750 (SPFireSD project) and 708063 (NeTNPPAO project). Ivana Cvijanovic was supported by Generalitat de Catalunya (Secretaria d'Universitats i Recerca del Departament d’Empresa i Coneixement) through the Beatriu de Pinós program. Yohan Ruprich-Robert was funded by the European Union's Horizon 2020 research and innovation program in the framework of Marie Skłodowska-Curie grant INADEC (grant agreement 800154). Paul A. Miller, Lars Nieradzik, David Wårlind, Roland Schrödner, and Benjamin Smith acknowledge financial support from the strategic research area “Modeling the Regional and Global Earth System” (MERGE) and the Lund University Centre for Studies of Carbon Cycle and Climate Interactions (LUCCI). Paul A. Miller, David Wårlind, and Benjamin Smith acknowledge financial support from the Swedish national strategic e-science research program eSSENCE. Paul A. Miller further acknowledges financial support from the Swedish Research Council (Vetenskapsrådet) under project no. 621-2013-5487. Shuting Yang acknowledges financial support from a Synergy Grant from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC (grant agreement 610055) as part of the ice2ice project and the NordForsk-funded Nordic Centre of Excellence project (award 76654) ARCPATH. Marianne Sloth Madsen acknowledges financial support from the Danish National Center for Climate Research (NCKF). Andrea Alessandri and Peter Anthoni acknowledge funding from the Helmholtz Association in its ATMO program. Thomas Arsouze, Arthur Ramos, and Valentina Sicardi received funding from the Ministerio de Ciencia, Innovación y Universidades as part of the DeCUSO project (CGL2017-84493-R).​​​​​​​Peer Reviewed"Article signat per 61 autors/es: Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho11, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang"Postprint (author's final draft
    corecore