106 research outputs found

    IST Austria Technical Report

    Get PDF
    In this work we present a flexible tool for tumor progression, which simulates the evolutionary dynamics of cancer. Tumor progression implements a multi-type branching process where the key parameters are the fitness landscape, the mutation rate, and the average time of cell division. The fitness of a cancer cell depends on the mutations it has accumulated. The input to our tool could be any fitness landscape, mutation rate, and cell division time, and the tool produces the growth dynamics and all relevant statistics

    On measuring selection in cancer from subclonal mutation frequencies

    Get PDF
    Recently available cancer sequencing data have revealed a complex view of the cancer genome containing a multitude of mutations, including drivers responsible for cancer progression and neutral passengers. Measuring selection in cancer and distinguishing drivers from passengers have important implications for development of novel treatment strategies. It has recently been argued that a third of cancers are evolving neutrally, as their mutational frequency spectrum follows a 1/f power law expected from neutral evolution in a particular intermediate frequency range. We study a stochastic model of cancer evolution and derive a formula for the probability distribution of the cancer cell frequency of a subclonal driver, demonstrating that driver frequency is biased towards 0 and 1. We show that it is difficult to capture a driver mutation at an intermediate frequency, and thus the calling of neutrality due to a lack of such driver will significantly overestimate the number of neutrally evolving tumors. Our approach provides quantification of the validity of the 1/f statistic across the entire range of relevant parameter values. We also show that our conclusions remain valid for non-exponential models: spatial 3d model and sigmoidal growth, relevant for early- and late stages of cancer growth

    Pharmacogenomics: Sex Differences and Application in Pediatrics

    Get PDF
    Pharmacogenomics is a promising field which increasingly influences medicine and biomedical research in many areas. The aim of this article is to review recent advancements in the understanding of genetic polymorphisms and their influence on interindividual variability in drug response. Also, the main variabilities in drug response according to sex differences will be discussed. The translation of pharmacogenomics into the clinical routine as well as the challenges of achieving the goal of personalized medicine are also discussed. The role of pharmacogenetic tests in pediatrics has not been well defined yet, but it is clear that those tests could help in resolving some issues regarding the administration of drugs to children. At the conclusion, the foremost ethical, social and regulatory issues regarding the translation of pharmacogenomics into clinical practice and future perspectives in the field will be discussed

    Comparative pathological findings in mute swans (Cygnus olor) naturally infected with highly pathogenic Avian influenza viruses H5N1 and H5N8 in Serbia

    Get PDF
    The aim of this study was to compare pathological lesions and viral antigen expression in the organs of mute swans (Cygnus olor) naturally infected with highly pathogenic avian influenza virus subtypes H5N1 and H5N8. The examination was conducted on the carcasses of 22 mute swans which died during the avian influenza outbreaks in Serbia in 2006 and 2016-2017. Avian influenza virus subtype H5N8 isolated from mute swans in 2016-2017 was clustered within the 2.3.4.4 Glade group B. After necropsy, lung, liver, spleen, pancreas, kidney and brain tissues were sampled for histopathology and immunohistochemical examination. Avian influenza virus nucleoprotein polyclonal antibodies were used for detecting the viral antigen in the examined tissues. The most significant gross lesions were necrosis and haemorrhages in the pancreas. Major histological lesions were multifocal necroses in the pancreas, spleen and liver, non-purulent encephalitis, lung congestion and oedema. Immunohistochemical demonstration of HPAIV nucleoprotein in pancreas and brain was strongly consistent with histological lesions in both infected groups. Our findings showed that pancreas was the most affected organ in all examined mute swans. In addition to increased mortality rate, similar pathological findings were detected in mute swans naturally infected with highly pathogenic avian influenza viruses H5N1 and H5N8

    IST Austria Technical Report

    Get PDF
    A comprehensive understanding of the clonal evolution of cancer is critical for understanding neoplasia. Genome-wide sequencing data enables evolutionary studies at unprecedented depth. However, classical phylogenetic methods often struggle with noisy sequencing data of impure DNA samples and fail to detect subclones that have different evolutionary trajectories. We have developed a tool, called Treeomics, that allows us to reconstruct the phylogeny of a cancer with commonly available sequencing technologies. Using Bayesian inference and Integer Linear Programming, robust phylogenies consistent with the biological processes underlying cancer evolution were obtained for pancreatic, ovarian, and prostate cancers. Furthermore, Treeomics correctly identified sequencing artifacts such as those resulting from low statistical power; nearly 7% of variants were misclassified by conventional statistical methods. These artifacts can skew phylogenies by creating illusory tumor heterogeneity among distinct samples. Importantly, we show that the evolutionary trees generated with Treeomics are mathematically optimal

    Environmental Bovine Mastitis Pathogens: Prevalence, Antimicrobial Susceptibility, and Sensitivity to Thymus vulgaris L., Thymus serpyllum L., and Origanum vulgare L. Essential Oils

    Get PDF
    Mastitis is considered to be one of the most important diseases of dairy cows in terms of health, production, and economy. Being the most common cause of antibiotic consumption in dairy cows, treatment of this disease is one of the biggest challenges in the veterinary profession as an increasing number of pathogens develop resistance to antibiotics used in the treatment. Therefore, new alternative approaches for limiting the use of antibiotics in livestock are required. For this reason, our study aimed to investigate prevalence of environmental mastitis associated bacterial strains, as well as the sensitivity of isolated strains to different antibiotics. Additionally, the therapeutic potential of three essential oils (EOs) was tested against bovine Serratia spp. and Proteus spp. mastitis pathogens, based on their chemical composition, as well as antibacterial potential. The study was carried out on 81 milk samples collected from dairy cows with mastitis. In order to determine prevalence of S. marcescens and P. mirabilis, microbiological isolation and identification were performed. Antimicrobial susceptibility testing was performed by disk diffusion method and the microdilution method was used to determine the antibacterial activity of selected EOs. In the oregano EO, a total of 23 compounds were detected, with carvacrol as a dominant component (78.94%). A total of 26 components were present in the EO of common thyme, where thymol was the most abundant compound (46.37%). Thymol also dominated (55.11%) the wild thyme EO. All tested EOs displayed antibacterial activity against all strains to different extents, while wild and common thyme EOs were the most effective. It could be concluded that the tested EOs represent promising therapeutic candidates for effective non-antibiotic treatment of mastitis

    Induction of NTPDase1/CD39 by Reactive Microglia and Macrophages Is Associated With the Functional State During EAE

    Get PDF
    Purinergic signaling is critically involved in neuroinflammation associated with multiple sclerosis (MS) and its major inflammatory animal model, experimental autoimmune encephalomyelitis (EAE). Herein, we explored the expression of ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1/CD39) in the spinal cord, at the onset (Eo), peak (Ep), and end (Ee) of EAE. Several-fold increase in mRNA and in NTPDase1 protein levels were observed at Eo and Ep. In situ hybridization combined with fluorescent immunohistochemistry showed that reactive microglia and infiltrated mononuclear cells mostly accounted for the observed increase. Colocalization analysis revealed that up to 80% of Iba1 immunoreactivity and ∼50% of CD68 immunoreactivity was colocalized with NTPDase1, while flow cytometric analysis revealed that ∼70% of mononuclear infiltrates were NTPDase1+ at Ep. Given the main role of NTPDase1 to degrade proinflammatory ATP, we hypothesized that the observed up-regulation of NTPDase1 may be associated with the transition between proinflammatory M1-like to neuroprotective M2-like phenotype of microglia/macrophages during EAE. Functional phenotype of reactive microglia/macrophages that overexpress NTPDase1 was assessed by multi-image colocalization analysis using iNOS and Arg1 as selective markers for M1 and M2 reactive states, respectively. At the peak of EAE NTPDase1 immunoreactivity showed much higher co-occurrence with Arg1 immunoreactivity in microglia and macrophages, compared to iNOS, implying its stronger association with M2-like reactive phenotype. Additionally, in ∼80% of CD68 positive cells NTPDase1 was coexpressed with Arg1 compared to negligible fraction coexpresing iNOS and ∼15% coexpresing both markers, additionally indicating prevalent association of NTPDase1 with M2-like microglial/macrophages phenotype at Ep. Together, our data suggest an association between NTPDase1 up-regulation by reactive microglia and infiltrated macrophages and their transition toward antiinflammatory phenotype in EAE
    corecore