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Reconstructing the evolutionary history of metastases is critical for 
understanding their basic biological principles and has profound clinical 
implications1–3. Genome-wide sequencing data has enabled modern 
phylogenomic methods to accurately dissect subclones and their phylogenies 
from noisy and impure bulk tumor samples at unprecedented depth4–7. 
However, existing methods are not designed to infer metastatic seeding 
patterns. We have developed a tool, called Treeomics, that utilizes Bayesian 
inference and Integer Linear Programming to reconstruct the phylogeny of 
metastases. Treeomics allowed us to	infer comprehensive seeding patterns for 
pancreatic8, ovarian9, and prostate cancers10,11. Moreover, Treeomics correctly 
disambiguated true seeding patterns from sequencing artifacts; 7% of variants 
were misclassified by conventional statistical methods. These artifacts can 
skew phylogenies by creating illusory tumor heterogeneity among distinct 
samples. Last, we performed in silico benchmarking on simulated tumor 
phylogenies across a wide range of sample purities (30-90%) and sequencing 
depths (50-800x) to demonstrate the high accuracy of Treeomics compared to 
existing methods. 
  

Genetic evolution underlies our current understanding of cancer12–14 and the 
development of resistance to therapies15,16. The principles governing this evolution are 
still an active area of research, particularly for metastasis, the final biological stage of 
cancer that is responsible for the vast majority of deaths from the disease. Although many 
insights into the nature of metastasis have emerged2,17,18, we do not yet know how 
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malignant tumors evolve the potential to metastasize, nor do we know the temporal or 
spatial rules governing the seeding of metastases at sites distant from the primary 
tumor1,3,19–21.  

 
In order to better understand the process of metastasis, researchers have 

reconstructed the temporal evolution of patients’ cancers from genome sequencing data22–

25. Thus far, phylogenomic analysis has largely focused on the subclonal composition and 
branching patterns of primary tumors11,26,27. The evolutionary relationships among 
metastases are equally important but have less often been determined for several 
reasons9,10,28. First, comprehensive data sets of samples from spatially-distinct metastases 
in different organs are rarely available. Second, most advanced cancer samples are 
derived from patients who have been treated with toxic and mutagenic chemotherapies, 
imposing a variety of unknown constraints on genetic evolution and its interpretation. 
Third, tumors are composed of varying proportions of neoplastic and non-neoplastic 
cells, and inferring meaningful evolutionary patterns from such impure samples is 
challenging29,30. Moreover, the situation for solid tumors differs from that of “liquid 
tumors”, where mutant allele fractions are high and can be easily determined from 
cytological analysis. Fourth, chromosome-level changes, including losses, are frequently 
observed in cancers, and previously acquired variants can be lost (i.e., some variants are 
not “persistent”). Fifth, even when performed at high depth, next-generation sequencing 
coverage is always non-uniform, resulting in different amounts of uncertainty at different 
loci within the same DNA sample as well as among different samples at the same locus. 
Finally, evolutionarily informative genetic differences among the founding cells of 
distant metastases tend to be rare8.  

 
The variety of methods that have recently been used to infer evolutionary 

relationships among tumors underscore these complicating factors and the need for a 
robust phylogenomic approach.  The methods include those based on genetic distance9, 
maximum parsimony27,28,31, clonal ordering14,25,32 and variant allele frequency33–35. 
Modern phylogenomic methods classify variants based on the observed variant allele 
frequencies (VAFs), account for varying ploidy and neoplastic cell content, and 
reconstruct comprehensive phylogenies4–7,36–38. However, as we will show below, in the 
case of reconstructing the evolution of metastases, these methods suffer from the low 
number of informative variants and may fail to identify the subclones that gave rise to the 
observed seeding patterns. Classical phylogenetics assumes that the individual traits are 
known with certainty29. Consequently, these methods struggle with noisy high-
throughput DNA sequencing data and do not exploit the full potential of these data due to 
the error-prone binary present/absent classification of variants. Furthermore, many of the 
methods used for inferring cancer evolutionary trees are based on those designed for 
more complex evolutionary processes involving sex and recombination20.  
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RESULTS 
Evolutionarily incompatible mutation patterns 
To illustrate our approach, we first focused on the data of a treatment-naïve pancreatic 
cancer patient Pam038 (Fig. 1). WGS (whole-genome sequencing; coverage: median 51x, 
mean 56x) as well as deep targeted sequencing (coverage: median 296x, mean 644x) was 
performed on ten spatially-distinct samples: two from the primary tumor and eight from 
distinct liver and lung metastases (Online Methods and ref. 8). Estimated purities ranged 
from 18% to 46% per sample (Fig. S2; Supplementary Information), typical for 
low-cellularity cancers (Fig. 1). Founder variants (present in all samples) and unique 
variants (present in exactly one sample) are parsimony-uninformative and hence 
irrelevant for the branching in an evolutionary tree. Parsimony-informative variants 
(variants present in some but not in all samples) exhibited contradicting mutation patterns 
when we tried to reconstruct a phylogeny consistent with the evolutionary processes 
underlying tumor progression using conventional methods. Identifying the evolutionarily 
compatible variants is known as the “binary maximum compatibility problem” and has 
been widely studied for decades39–43. A strict binary present/absent classification can be 
very problematic due to the wide coverage distribution in sequencing data43. For 
example, likely clonal variants in the driver genes ATM and KRAS would be classified as 
absent in sample LuM 2 because both were covered only fourteen times and were 
mutated only once (Fig. 1b; Supplementary Table S2).  We developed a Bayesian 
inference model to determine the posterior probability of whether a variant was or was 
not found in each sequenced lesion rather than rely on a binary input (“present” or 
“absent”; Fig. 1b; Online Methods). This generalization, formalized as a Mixed Integer 
Linear Program44 (MILP), enabled us to simultaneously predict sequencing artifacts and 
infer phylogenies in a remarkably robust fashion.  

 
Two variants are evolutionary compatible if there exists an evolutionary tree where 

each variant is only acquired once and never lost. This condition is known as the perfect 
(the same variant is not independently acquired twice; infinite sites model45) and 
persistent (acquired variants are not lost; no back mutation) phylogeny assumption – the 
basic principle of modern tumor phylogeny reconstruction methods4–7,36. In our case the 
mutation pattern of a variant is given by the set of samples where the variant is present 
(Fig. S1). Therefore, two somatic variants ! and ! are evolutionarily incompatible if and 
only if samples with the following three patterns exist: (i) variant ! is absent and ! is 
present, (ii) ! is present and ! is absent, and (iii) both variants are present. Because 
somatic variants are by definition absent in the germline, ! and ! are evolutionarily 
incompatible and no perfect and persistent phylogeny can explain these data (Fig. S1). As 
expected, based on conventional binary present/absent classification of variants, a perfect 
and persistent tree consistent with the observed (noisy) data of Pam03 cannot be inferred. 
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We show that such a phylogeny indeed exists but that it is hidden behind misleading 
technical and biological artifacts, mostly resulting from insufficient coverage or low 
neoplastic cell content (Fig. S2).  

 
Identifying evolutionarily compatible mutation patterns 
To account for inconclusive data, we utilize a Bayesian inference model to calculate the 
probability that a variant is present in a sample (Fig. 1c, Online Methods). Using these 
probabilities for each individual variant, we calculated reliability scores combining the 
evidence for each possible mutation pattern across all variants. We constructed an 
evolutionary conflict graph where the nodes were determined through analysis of all 
mutation patterns. Each node was assigned a weight provided by the calculated reliability 
scores (Fig. S3). If two nodes (mutation patterns) were evolutionarily incompatible, an 
edge between the corresponding nodes was added. We aimed to identify the set of nodes 
that maximized the sum of the weights (reliability scores) when no pair of nodes was 
evolutionarily incompatible. This maximal set represents the most reliable and 
evolutionarily compatible mutation patterns (Supplementary Information). To evaluate 
the confidence in the identified evolutionarily compatible mutation patterns, we 
performed bootstrapping on the provided variants. 
 
Predicting putative artifacts in sequencing data 
The solution obtained with the MILP directly provided the most likely evolutionarily 
compatible mutation pattern for each variant. By comparing our inferred classifications to 
conventional binary classifications, Treeomics predicted putative sequencing or 
biological artifacts in the data (Fig. 2a,b). The conventional classifications differed in 
9.2% of the variants in Pam03 (83 putative artifacts from 90 variants across 10 samples; 
Fig. 2b). As expected, the majority (77) of the differences were caused by putative 
false-negatives in the binary classification that were inferred to be present by Treeomics. 
Sixty-four of these putative false-negatives had relatively low coverage 
(median sequencing depth: 18), explaining how they could easily be misclassified as 
absent given the low neoplastic cell content in these samples. Accordingly, many of these 
under-powered false-negatives occurred in samples with the lowest coverage (liver 
metastasis LiM 5, lung metastases LuM 2-3) or lowest neoplastic cell content (LuM 1; 
Fig. S2). In LuM 2, the driver gene mutation KRAS was incorrectly classified as absent 
by conventional means though it is most likely a clonal founding mutation and was 
present at a VAF of 19% in the original WGS sample (Supplementary Table S1). 
Similarly the driver gene mutation ATM was incorrectly classified as absent in two 
samples (VAF 18% and 19% in the WGS data). Although manual review of these 
samples revealed mutant reads in KRAS, it is not scalable to manually review every 
putative variant detected by next generation sequencing.	 Some variants contained 
false-negatives across many samples, indicating that these variants were generally 
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difficult to call. Remarkably, 91% (58/64) of the predicted under-powered false-negatives 
were either significantly present in the WGS data (45/58; mostly at higher coverage than 
in the targeted sequencing data), or the genomic region of the variant possessed a low 
alignability score46,47 (13/58; Supplementary Table S1).  
 

For two variants sequenced at high depth, Treeomics predicted 13 putative 
false-negatives. The WGS data confirmed sequencing artifacts in these two variants but 
indicated that 4 likely false-positives (all absent in the WGS data) induced Treeomics to 
predict 13 false-negatives rather than 4 false-positives (Supplementary Table S1). Of the 
6 putative false-positives (pink squares in Fig. 2b), 83% (5/6) were classified as absent in 
the original WGS data and their median VAF was 1.3% (Supplementary Table S1). In 
total, 76% (58 putative false-negatives + 5 putative false-positives; 63/83) of the 
predicted artifacts were successfully validated. Hence, we verified that at least 7% 
(63/900) of the variants were misclassified by conventional binary classification. If a 
phylogenomic method does not account for sequencing artifacts, the mutation patterns of 
a large fraction of variants will often be inconsistent with any inferred evolutionary tree. 
In Pam03, the mutation patterns of 31.1% (28/90) of the variants would be evolutionarily 
incompatible (Fig. 2a). These putative artifacts may also help to explain the observed 
high tumor heterogeneity in earlier studies and the recently reported tumor similarity 
when sequencing depth is increased8,27. 

 
Inferring evolutionary trees 
From the identified mutation patterns, Treeomics inferred an evolutionary tree rooted at 
the germline DNA sequence of the pancreatic cancer patient Pam03 (Fig. 2c). We found 
strong support for an evolutionarily related group of geographically distinct 
lesions: samples LiM 2-5 (liver metastases) and PT 11 (primary tumor). These results 
suggest that a recent parental clone of PT 11 seeded these liver metastases. We also found 
the same evolutionary relationship by using the low-coverage WGS data (Fig. S4). In 
contrast to the targeted sequencing data, the WGS data indicated that lung metastasis 
LuM 1 was more closely related to LuM 2 and LuM 3. Though the low neoplastic cell 
content prevents a definite conclusion about the seeding subclone of LuM 1, the 
reconstructed phylogeny strongly suggests that the liver metastasis LiM 1 was seeded 
from a genetically different subclone than all other liver metastases. This diversity in 
seeding subclones was also found in another treatment-naïve pancreatic cancer patient 
(Pam01) whose data similarly indicated that liver metastases were seeded from 
genetically distinct subclones (Fig. S5). The phylogeny of Pam01 suggested that distinct 
subclones of the primary tumor gave rise to not just different liver metastases but also 
different lymph node metastases. This observation suggests that subclones are not 
necessarily predisposed to seeding at a particular site. In contrast, the phylogeny of 
Pam02 revealed that all liver metastases except one (LiM 7 with low median 
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coverage: 28) were very closely related to each other and to various regions of the 
primary tumor – indicating recent divergence (Fig. S6). Pam02’s pancreatic cancer might 
have been expanded very rapidly with only 0.5 months from diagnosis to death compared 
to 7 and 10 months for Pam01 and Pam03. 
 

To further validate our approach, we reanalyzed data from high-grade serous 
ovarian cancers9. We were able to reproduce all phylogenetic trees of Bashashati et al.9 
except for Case 5. In this case, the authors reported an early divergence of sample 5c 
while Treeomics suggested a later divergence (Fig. S7c). Comprehensive analysis of their 
data (reinterpreted in Fig. S7a,b) revealed that their tree either required that several 
variants (including two driver gene mutations and multiple indels) occurred 
independently twice or that two mutations in the driver genes ABL1 and MDM4 were 
lost. Both possibilities seem unlikely (Fig. S7 and Fig. 1D in ref. 9); this discrepancy was 
also identified by Popic et al. (ref. 6). Treeomics did not require these implausible 
scenarios to construct an otherwise similar tree. Distance-based methods, such as those 
used by Bashashati et al., can be compromised by large differences in the number of 
acquired mutations among samples; sample 5c had twice as many mutations than most 
other samples. 

 
We also reanalyzed a comprehensive data set from prostate cancers10. Treeomics 

confirmed the majority of results but also further refined others. For example, for patient 
A32, Gundem et al. (2015) reported an inconclusive evolutionary tree due to evolutionary 
incompatible subclones present at low frequencies. Our method used the strong evidence 
for mutation patterns C, E and D, F (see Extended Data Figure 3p,q in ref. 10) and was 
thereby able to illuminate the evolutionary relationships among these samples in a 
conclusive fashion (Fig. S8). 

 
If multiple subclones with spatially-distinct evolutionary histories (e.g., metastasis 

reseeding) were present in the same sample at detectable frequencies, conventional 
phylogenetic approaches would be unable to separate their evolutionary trajectories. In 
these scenarios, evolutionarily incompatible mutation patterns with high reliability scores 
were identified and utilized to detect these subclones and to infer separate evolutionary 
histories (Fig. S9b; Online Methods; Supplementary Information). For both the prostate 
cancer data of case A2210 (Fig. S9) and of case 611 (Fig. S10), Treeomics identified 
subclonal structures and separated their evolutionary trajectories without requiring high 
purity samples or deep sequencing data.  
 
In silico benchmarking demonstrates high accuracy  
We implemented a stochastic continuous-time multi-type branching process to imitate the 
genetics of distinct metastases seeded according to an evolving cancer21,48 (Fig. 3; Online 
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Methods). Based on the simulated ground truth data, we compared the performance of 
Treeomics with conventional phylogenetic methods (Maximum Parsimony and Neighbor 
Joining) and a modern phylogenomic method (PhyloWGS7) across sample purities of 
30% to 90% and sequencing depths of 50 to 800 (Fig. 3c-f, Figs. S11-S12) representing 
the range of typical sample quality. We investigated an unprecedented total of 37,500 
independently simulated phylogenies comprised of 75 different combinations of sample 
purity, mean sequencing depth and intermetastatic mixing. All simulated phylogenies can 
be downloaded from a github repository (Online Methods). The benchmarking results 
demonstrate that phylogenies obtained from low coverage WES data show high error 
rates independent of the used method. Even for high purities, one third of the inferred 
branchings tend to be wrong. For mean coverages of 100 and above, the error rates drop 
dramatically and phylogenies can be accurately reconstructed. For a mean coverage of 
200 and a neoplastic cell content of 75%, Maximum Parsimony makes about twice the 
number of errors compared to Treeomics (Fig. 3d, Fig. S11).  

Current subclone inference algorithms do not directly reconstruct phylogenies of 
distinct sites as Treeomics does but infer joint phylogenies of variants, which are 
sometimes simultaneously grouped into subclones6,7,36–38. To enable a comparison of 
these slightly different methodologies, we developed a mutation matrix error score 
(similar as in ref. 6) that checks (i) if variants of the same subclone were indeed assigned 
to the same subclone and (ii) if the ancestral relationship among variants was correctly 
determined (Online Methods). Since the runtime of PhyloWGS increases significantly 
with the number of variants, we removed all noisy, private variants in the input for 
PhyloWGS. Despite this advantage by removing potential noise, Treeomics outperformed 
PhyloWGS in all considered scenarios (Fig. 3f). In the majority of scenarios, the error 
score of PhyloWGS was more than 10-fold higher than the error score of Treeomics. We 
also note that the runtime of PhyloWGS was around 5-10 hours per simulated phylogeny 
(in total ~200,000 core computing hours), while Treeomics needed a few seconds per 
case (in total ~50 core computing hours).	
 
DISCUSSION 
The new approach described here efficiently reconstructs the evolutionary history, detects 
potential artifacts in noisy sequencing data, and finds subclones of distinct origin. The 
evolutionary theory of asexually evolving populations combined with Bayesian inference 
and Integer Linear Programming enabled us to infer detailed phylogenomic trees with 
significantly fewer errors than existing methods. In contrast to other tools, Treeomics 
accounts for putative artifacts in sequencing data and can thereby infer the branches 
where somatic variants were acquired as well as where some may have been lost during 
evolution, presumably through losses of heterozygosity resulting from chromosomal 
instability49. The branching in the inferred trees sheds new light on the seeding patterns 
of particular metastatic lesions1,20. For example, in contrast to colon cancer, where liver 
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metastases are assumed to seed lung metastases50, our results suggest that this may not be 
the case in pancreatic cancer. The reconstructed phylogenies also indicate that distinct 
subclones in the primary tumor were equally capable to seed metastases in the same and 
in different organs (Fig. S5). The evolutionary rules of natural metastatic cancers leading 
to the highly non-random pattern of metastases in Pam03 are just beginning to emerge.  
 

Despite these detailed reconstructed phylogenies, there are several limitations that 
should not be neglected. Without additional data, even completely correct cancer 
phylogenies do neither directly provide information about the temporal ordering in which 
metastases were seeded nor about the anatomic location of the seeding subclones. For 
example, metastasis M6 was seeded last but diverged first in the simulated phylogeny 
(Fig. 3a). Furthermore, a single seeding event cannot be distinguished from multiple 
seeding events from the topology of the reconstructed tree alone (see ref. 20). 
Incorporating multiple samples of the primary tumor and inferring the acquired mutations 
on the individual branches can provide evidence about the location of the seeding 
subclone and the timing of the seeding event. For example, the genetic similarity of the 
primary tumor sample PT 11 and the liver metastases LiM 2-5 suggests multiple seeding 
events from a recent ancestor of PT 11. Moreover, phylogenomic approaches could 
incorporate estimated growth rates and mutation rates to better quantify the probability of 
metastasis-to-metastasis spread. 
 

We have designed Treeomics from first principles to directly handle ambiguity in 
high-throughput sequencing data, including samples with low neoplastic cell content or 
coverage. The mutation patterns and their evolutionary conflict graph form a robust data 
structure and consequently the painful task of semi-automatic filtering becomes 
unnecessary. As a result of the Bayesian confidence estimates for the individual variants, 
this method can infer more robust results than traditional phylogenetic methods, which 
employ a binary representation of sequencing data (Fig. 2a). Furthermore, as shown 
above, distance-based methods can produce results inconsistent with the evolutionary 
theory of cancer as they often ignore knowledge of biological phenomena specific to 
neoplasia (Fig. S7). We note that PhyloWGS and other subclone inference methods have 
not been designed to reconstruct phylogenies based on these few genetic variants that 
determine the evolutionary history of metastases. The key difference between these 
approaches is that Treeomics assumes that mixing of subclones from two 
spatially-distinct sites is rare. Treeomics therefore works extremely well among 
metastases, however would not be applicable for liquid cancers. On the contrary, tools 
like PhyloWGS work extremely well in liquid cancers. Last, we compared our results to 
AncesTree36, which roughly identified the evolutionarily related samples in Pam03 but 
excluded 70% (63/90) of the variants (among them the driver gene mutations in KRAS 
and ATM) in the inferred phylogeny due to evolutionary incompatibilities (Fig. S13).  
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At present, Treeomics only employs nucleotide substitutions and short insertions 

and deletions – a subset of the available information. The benchmarking results 
demonstrate that a single mutation varying in two samples is typically sufficient for 
Treeomics to infer the correct evolutionary history (Fig. 3); a crucial property given the 
high genetic similarity of metastases8. Other types of data, such as copy number 
alterations, structural variations and DNA methylation, could be incorporated into 
Treeomics to further improve the accuracy of the inferred results51–54.  

 
Day and Sankoff showed that inferring the most likely evolutionary trajectories is a 

computationally challenging problem (NP-complete39). Sophisticated approximation 
algorithms have been developed in the context of language and cancer evolution40,42,43. 
However, medium-sized instances of NP-complete problems are no longer intractable 
due to the enormous engineering and research effort that has been devoted to ILP solvers. 
The MILP44 formulation enables an efficient and robust analysis of large datasets. We 
prove that an approximation algorithm that would guarantee that its solution is at most 
36.06% worse than the optimal solution cannot exist unless the complexity class P=NP 
(Supplementary Information, Theorem 1). Salari et al.43 explored a related approach but 
approximated two NP-complete problems, possibly leading to suboptimal results. 
Treeomics produces a mathematically guaranteed to be optimal result without 
convergence or termination issues. Note that a mathematical optimal solution is not 
necessarily equivalent to the biological truth, specifically in the case of low neoplastic 
cell content or coverage (Fig. 3c,e). MILPs may also be useful in other areas of 
phylogenetic inference where methods with strong biological assumptions (e.g. constant 
mutation rates or specific substitution profiles) are not applicable or are computationally 
too expensive to obtain guaranteed optimal solutions.  
 
ONLINE METHODS 
DNA sequencing design and validation 
As described in detail in ref. 8, sequencing data were generated in two stages. First, 
genomic DNA from 26 tumor samples (20 metastases and 6 primary tumor sections) was 
evaluated by 60x whole genome sequencing (WGS) using an Illumina Hi-Seq 2000. 
Importantly, genomic DNA from the normal tissue of each patient was used to facilitate 
identification of somatic variants. We obtained an average coverage of 69x with 97.5% of 
bases covered at >10x, revealing a total of 127,597 putative coding and noncoding 
somatic mutations, (average of 4,908 per sample). To limit the artifacts generated by 
WGS and alignment, we filtered the putative variants using several quality parameters, 
including read directionality, mutant allele frequency detected in the normal, known 
human SNPs, and the number of independent tags at each site. 
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Second, we utilized a targeted sequencing approach to independently screen every 

mutation that we observed to be of high quality in at least one WGS tumor sample. 
Briefly, probes for capture were designed to flank each potential mutant base (n = 2105) 
and libraries were prepared for the original 26 WGS samples. Using an Illumina chip-
based approach, we successfully aligned, processed, and validated 381 mutations (range 
106-164 per patient) at an average sequencing depth of 731x (Supplementary Tables S2, 
S3, S4). In addition to the increased coverage and sensitivity of targeted sequencing, both 
sequencing approaches generated independent datasets in which we could directly 
compare putative variants in silico among many tumors within a patient. Additional 
details regarding patient selection, processing of tissue samples and DNA extraction and 
quantification can be found in ref. 8. 

 
Bayesian inference model 
To compute reliability scores for each mutation pattern, we extract posterior probabilities 
for the presence and absence of a variant in a sample from a Bayesian binomial 
likelihood model of error-prone sequencing. If f is the true fraction of variant reads in the 
sample, ! is our prior belief about f, and e is the sequencing error rate, the posterior 
distribution ! of f given N total reads and K variant reads is  

! ! !,! = !
! ∙ ! 1− ! + 1− ! ! ! ∙ ! ∙ ! + 1− ! 1− ! !!! ∙ ! ! ∙ 1! (1) 

where ! is a normalizing constant (see Supplementary Information). A priori, the variant 
allele frequency in a sample is exactly zero (! = 0) with some positive probability !!. 
The prior ! is then of the following form  

! ! = !! ∙ ! ! + 1− !! ∙ ! ! , (2) 
where ! !  denotes the Dirac delta function and !(!) denotes a prior given the variant is 
present. We use a sample-specific prior function to account for the by multiple fold 
varying neoplastic cell content across samples (Supplementary Information; Fig. S2). The 
posterior probability that a variant is absent in a sample with low neoplastic cell content 
will be lower than in a sample with high neoplastic cell content despite the same ! and ! 
(Supplementary Information). The posterior probability that a variant is absent, denoted 
by !, and the probability that a variant is present, denoted by !, are  

! = ! ! = 0 !,! , !  = 1− !. (3) 

A variety of more sophisticated variant detection algorithms can be used here as long as 
the output can be converted to posterior probabilities of presence and absence. We 
calculate the probability of each mutation pattern for a particular variant by multiplying 
the corresponding posterior probabilities for each sample. Each mutation pattern has 
some positive probability, but those supported by the data are given much more weight. 
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A mutation pattern ! is denoted as a binary vector of length |!| (total number of samples) 
where !!  is 1 if the variant is present in sample ! and 0 if absent. The likelihood 
!! !  that a variant ! exhibits pattern ! is 

!!(!) = !!,!!! ∙ !!,!!!!! .
!∈!

 (4) 

If the presence or absence of a variant in some samples is uncertain, the likelihood of any 
individual mutation pattern will generally be lower. The reliability score !! of each 
mutation pattern ! (corresponding to a node in the evolutionary conflict graph; Fig. S3) is 
given by  

!! =
−!"# 1− !! !!

! . (5) 

The argument of the logarithm denotes the probability that no mutation has pattern ! and 
hence leverages the full sequencing information from all variants. With these scores 
(weights) normalized by the number of considered variants !, the minimum weight 
vertex cover of the evolutionary conflict graph corresponds to identifying the most 
reliable and evolutionarily compatible mutation patterns (see Supplementary Information 
for further details). 
 
Identifying reliable evolutionarily compatible mutation patterns 
Given the calculated reliability scores, we efficiently find the most reliable and 
evolutionarily compatible mutation pattern for all variants via solving a Mixed Integer 
Linear Program44 (MILP). In the Supplementary Information we prove that finding these 
mutation patterns is equivalent to solving the Minimum Vertex Cover problem; one of 
Karp's original 21 NP-complete problems39,55. In the Minimum Vertex Cover problem 
one wants to find the minimum set of nodes in an undirected graph such that each edge in 
the graph is adjacent to one of the nodes in the minimum set. Therefore, by definition all 
edges are covered by the nodes in the minimum set. Similarly, we try to find the weighted 
set of nodes (here mutation patterns) with the minimal sum of reliability scores such that 
no evolutionary incompatibilities in the conflict graph remain. After this minimal set of 
nodes and their adjacent edges have been removed from the graph, we can easily infer an 
evolutionary tree since evolutionary conflicts no longer exist (i.e., all edges were covered 
and removed with the minimal set). The remaining set of mutation patterns is by 
definition the maximal set of evolutionarily compatible patterns (Supplementary 
Information). 
 

In the evolutionary conflict graph ! = (!,!) , each node ! ∈ !  represents a 
different mutation pattern. For ! samples, the number of nodes |!| is given by 2!. For 
each pair of evolutionarily incompatible mutation patterns ! and !, there exists an edge 
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(!, !) ∈ !. The weight (!!) of each node ! is given by the reliability scores !! described in 
the Bayesian inference model section (Fig. S3). 

 
The MILP to find the minimal-weighted set of evolutionarily incompatible mutation 

patterns is defined by the following objective function and constraints:  

(objective function) minimize  !! ∙ !!!∈!   (6) 

(constraints) 
subject to  !! + !! ≥ 1 

             !! ∈ {0,1}, !! > 0 

for all (!, !) ∈ ! 
for all ! ∈ ! 

 

This formulation guarantees that the MILP solver finds the minimal value of the 
objective function such that all constraints are met and hence the nodes in the selected set 
cover all edges. The evolutionarily compatible and most reliable mutation 
patterns {! | !! = 0} are given by the complement set of the optimal solution {! | !! = 1} 
to the MILP. 
 
Inferring evolutionary trees 
After the evolutionarily compatible mutation patterns {! | !! = 1} have been identified 
and variants are assigned to their most likely evolutionarily compatible pattern based on 
the maximum likelihood weights given by the Bayesian inference model, the derivation 
of an evolutionary tree is a trivial computational task. In quadratic time (!(! ∙!)) of the 
input size we construct a unique phylogeny where ! is the number of samples and ! is 
the total number of distinct variants56. The branches where the individual variants are 
acquired follow from the inferred tree.  
 
Detecting subclones of distinct origin 
Evolutionary incompatible mutation patterns with high reliability scores may indicate 
mixed subclones with distinct evolutionary trajectories (Fig. S9b, Fig. S10a). Recall that 
evolutionary incompatibility requires that the conflicting variants need to be present 
together in at least one sample. However, even if both variants are mutated in a 
statistically significant fraction in the same sample, these variants may not be present in 
the same cells and the evolutionary laws of an asexually evolving population may not be 
violated. If an evolutionarily incompatible mutation pattern exhibits a reliability score 
higher than expected from noise, Treeomics utilizes this evidence to infer subclones with 
distinct evolutionary trajectories and unidirectional spreading. A detailed pseudo-code is 
provided in the Supplementary Information. As outlined for prostate cancer case A2210, 
subsets (descendants) and supersets (ancestors) of the conflicting mutation pattern can 
simultaneously be identified and a comprehensive evolutionary tree is inferred (Fig. S9c). 
This approach also worked well among samples from the same tissue. After two 
subclones were separated in mixed samples from a prostate tumor11, 12643 (out of 
12645) variants supported the inferred evolutionary tree (Fig. S10b). The remaining two 
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variants were predicted to be false-positives by Treeomics. We performed extensive 
benchmarking of the subclone detection algorithm for various scenarios described in the 
following section (Fig. S12). 
 
In silico benchmarking 
To assess the performance of Treeomics, we simulated metastatic progression according 
to a stochastic multi-type continuous-time branching process48,57–59 where metastases are 
seeded independently at random. Cells divide with birth rate ! = 0.16, die with death 
rate ! = 0.1555, and can leave the current site to successfully colonize a new site with 
probability ! = 10!!!48,60. When a cell divides, it can accumulate a mutation with 
probability ! = 0.045  (assuming a point mutation rate of 10!!  and 45 megabases 
covered by Illumina exome sequencing61). The evolutionary process is initiated by a 
single advanced cancer that already accumulated driver gene mutations. Subsequently 
accumulated mutations, Single Nucleotide Variants (SNVs) and Copy Number Variants 
(CNVs), are assumed to be neutral62,63. Variants are acquired randomly across all 
chromosome pairs such that no two copy number events overlap (reasonable if the CNV 
mutation rate is low). SNVs and CNVs may overlap, in which case the timing of the 
events is used to determine the allele fraction of SNVs at the affected locus. CNV length 
is sampled from the observed length distribution in ref. 64. Cells in the primary tumor 
grow exponentially up to a fixed carrying capacity65. After !  spatially-distinct 
metastases reached the detection size ! = 10!, the simulation is stopped. Note that new 
metastases can also be seeded from previously seeded metastases. 

To model the biopsy and sequencing process, a single sample consisting of one 
million cells of each of the ! metastases consistent to the considered purity (30%, 45%, 
60%, 75%, 90%) is subject to in silico sequencing. Metastases with a mixture of 
ancestries are simulated by random sampling from two distinct sites proportional to the 
tumor sizes at these sites. Sequencing depth is negative-binomially distributed with a 
given mean (50, 100, 200, 400, 800). A sequencing error rate of ! = 0.5% is assumed. 
The simulation output is the number of variant and reference "reads" in each metastasis 
sample for each mutated locus present in at least 1% (or more for low sequencing depth) 
of any of the sampled metastases. An example for a simulated phylogeny is depicted in 
Fig. 3a. All the simulated phylogenies are available on github: https://github.com/ 
johannesreiter/metastasesseeding. 
 

We compared Treeomics to standard phylogenetic reconstruction (Maximum 
Parsimony66, Neighbor Joining66) and modern tumor phylogeny reconstruction methods 
(PhyloWGS7). Two different error metrics demonstrate the performance of Treeomics 
against existing methods: branching error and mutation matrix error score. The branching 
error quantifies the accuracy of the reconstructed coalescent relationships among distinct 
sites. From the true coalescent tree among metastatic sites, the collection of coalescent 
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events among the sites is computed and compared to those predicted by the method. The 
branching error is defined as the fraction of true coalescent events missed by the 
reconstruction method. Since maximum parsimony and neighbor joining trees do not 
assume a perfect and persistent phylogeny, the branching error metric was used to 
compare these methods (Fig. 3, Fig. S11). The mutation matrix error score quantifies the 
accuracy of the reconstructed sequence of mutations acquired during an evolutionary 
process. For a tumor with ! parsimony-informative mutations across ! metastases, a ! 
by ! matrix ! is constructed where !!,! = 1 if mutation ! is parental to mutation ! and 0 
otherwise. In PhyloWGS, where many phylogenies are sampled, this matrix is averaged 
over all samples. For a reconstructed phylogeny mutation matrix !, the normalized error 

score is computed as !!,! − !!,!
!/(!! − !)!,! . Because PhyloWGS does not directly 

infer the coalescent relationship among sites, the mutation matrix error score was used in 
the benchmarking (Fig. 3, Fig. 12). Recall that only founder and parsimony-informative 
mutations were provided as input to PhyloWGS while Treeomics also had to deal with 
noisy private mutations. PhyloWGS was run with 2,500 MCMC iterations and 5,000 
inner Metropolis-Hastings iterations for a maximum of 15 hours for each individual case. 
Increasing the number of samples and iterations did not significantly decrease the 
mutation matrix error score. 
 
Binary present/absent classification 
We perform conventional binary present/absent classification of each variant to allow a 
comparison to the inferred classification used in our new approach. We scored each 
variant by calculating a p-value in all samples (one-tailed binomial test): 

Pr ! ≥ ! !!,!,! = 1− !
! ∙ !!"#!!!!

!!! ∙ (1− !!"#)!!!  where N denotes the 

coverage, K denotes the number of variant reads observed at this position, and X denotes 
the random number of false-positives. As null hypothesis H0, we assume that the variant 
is absent. Similar to Gundem et al.10, we assumed a false-positive rate (pfpr) of 0.5% for 
the Illumina chip-based targeted deep sequencing. We used the step-up method67 to 
control for an average false discovery rate (FDR) of 5% in the combined set of p-values 
from all samples of a patient. Variants with a rejected null hypothesis were classified as 
present.  The remaining variants were classified as absent.  
 
Code availability 
The source code and a manual for Treeomics, as well as multiple examples illustrating its 
usage, are provided at https://github.com/johannesreiter/treeomics. Treeomics v1.3 was 
used for the entire analysis. The tool is implemented in Python 3.4. The inputs to the tool 
are the called variants and the corresponding sequencing data, either in tab-separated-
values format or as matched tumor-normal VCF files. As output, Treeomics produces a 
comprehensive HTML report (Supplementary File 1) including statistical analysis of the 
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data, a mutation table plot and a list of putative artifacts (false-positives, well-powered 
and under-powered false-negatives). Additionally, Treeomics produces evolutionary trees 
in LaTeX/TikZ format for high-resolution plots in PDF format. If circos68 is installed, 
Treeomics automatically creates the evolutionary conflict graph and adds it to the HTML 
report. Treeomics also supports various filtering (e.g., minimal sample median coverage, 
false-positive rate, false-discovery rate) for an extensive analysis of the sequencing data. 
Detailed instructions for the filtering and analysis are provided in the readme file in the 
online repository. For solving the MILP, Treeomics makes use of the common CPLEX 
solver (v12.6) from IBM.  
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Figure 1: Tumor heterogeneity across lesions of pancreatic cancer patient Pam03. a, b | His-
tology at low (40x) and high (400x) power of liver metastasis LiM 1 and lung metastasis LuM 1, with
estimates of neoplastic cellularity determined by pathological review. Arrows highlight the few cancer
cells in LuM 1. c | Heatmap depicting the posterior probability (p) that a variant is considered as
present in deep targeted sequencing data. Top five rows show samples from five distinct liver metas-
tases (LiM 1-5); the following three rows show samples from three distinct lung metastases (LuM 1-3);
the bottom two rows show di↵erent parts of the primary tumor (PT 10-11). Dark blue corresponds
to a variant being present with probability > 99.9% and dark red corresponds to being absent with
probability > 99.9%. In some samples the mutation status for the most likely clonal driver mutations
in ATM and KRAS is unknown.
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Figure 2: Treeomics simultaneously identified putative artifacts and inferred the evolutionary

history of Pam03. a, b | Variants shown in Fig. 1c are organized as evolutionarily-defined groups
(nodes). Blue colored nodes are evolutionarily compatible and red colored nodes are evolutionarily
incompatible. Based on conventional present/absent classification, 31.1% of the variants were evolu-
tionarily incompatible (a). The incompatibilities are demarcated by red lines (edges) in the center of
the circle that connect each pair of incompatible nodes. Based on a Bayesian inference model and an
Integer Linear Program, Treeomics identified the most likely evolutionarily compatible mutation pattern
for each variant (b; Online Methods). This method predicted that 9.2% (83/900) of the variants across
all samples were misclassified and thereby caused the evolutionary incompatibilities shown in panel a.
76% of the predicted artifacts were validated in the WGS data, among those were artifacts in ATM
and KRAS. c | Reconstructed phylogeny from the identified evolutionarily compatible mutation patterns
in panel b. Gray percentages indicate bootstrapping values from 1000 samples. SC indicate predicted
subclones. Lung metastases (LuM 1-3) are depicted in red; Liver metastases (LiM 1-5) are depicted in
green; Primary tumor samples (PT 10-11) are depicted in black.
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Figure 3: In silico benchmarking demonstrates high accuracy of Treeomics across varying sam-

ple purity and mean sequencing depth compared to existing methods. a | Simulated metastatic
progression according to a stochastic branching process20,47. Metastases (M 1-6) are numbered in
chronological order of their seeding. Purple lines indicate evolution along lineages within the primary tu-
mor. Blue numbers correspond to the parsimony informative variants. Numbers in red denote subclonal
variants acquired after the seeding of the metastasis. SC indicates subclone. Dotted boxes illustrate
biopsies. b | Treeomics correctly reconstructed the simulated phylogeny in panel a by identifying the
few parsimony informative variants (blue). Private mutations acquired in the primary tumor are in-
distinguishable from subsequently acquired mutations. c-f | Benchmarking across 12, 500 simulated
phylogenies with six metastases. Branching error and mutation matrix error score dropped drastically
with increasing sequencing depth. For purities above 60% and coverages above 200, Maximum par-
simony made between 80% and 340% more errors than Treeomics. PhyloWGS exhibited error scores
more than 10-fold higher than those of Treeomics in most considered scenarios.
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