33 research outputs found

    <i>De novo</i> protein design, a retrospective.

    No full text

    Catalytic efficiency of designed catalytic proteins

    No full text

    Catalytic efficiency of designed catalytic proteins

    No full text
    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution

    Biosynthetic incorporation of the azulene moiety in proteins with high efficiency

    Get PDF
    Biosynthetic incorporation of beta-(1-azulenyl)-l-alanine, an isostere of tryptophan, is reported using a tryptophan auxotroph expression host. The azulene moiety introduced this way in proteins features many attractive spectroscopic properties, particularly suitable for in vivo studies

    Copper-Containing Catalytic Amyloids Promote Phosphoester Hydrolysis and Tandem Reactions

    No full text
    Self-assembly of short de novo designed peptides gives rise to catalytic amyloids capable of facilitating multiple chemical transformations. We show that catalytic amyloids can efficiently hydrolyze paraoxon, which is a widely used, highly toxic organophosphate pesticide. Moreover, these robust and inexpensive metal-containing materials can be easily deposited on various surfaces, producing catalytic flow devices. Finally, functional promiscuity of catalytic amyloids promotes tandem hydrolysis/oxidation reactions. High efficiency discovered in a very small library of peptides suggests an enormous potential for further improvement of catalytic properties, both in terms of catalytic efficiency and substrate scope
    corecore