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by UV light with wavelengths less than 300  nm, which 
interferes with other chromophores often present in a bio-
logical sample.

Replacing Trp by a Trp analog, which can be biosyn-
thetically introduced in a protein, offers a number of prac-
tical advantages for biochemical and biophysical studies 
(Ross et  al. 1997; Twine and Szabo 2003b; Broos 2014) 
(Scheme  1). For example, replacing Trp by 5-fluoroTrp 
(5-FTrp) creates in most cases a protein showing a 50  % 
higher quantum yield and a monoexpotential fluorescence 
decay (Broos et al. 2004). The higher IP of 5-FTrp, com-
pared to Trp, efficiently suppresses electron transfer of the 
excited indole moiety to nearby amide groups in the pro-
tein. As a result, the decay kinetics become independent 
of the rotameric states of the probe, explaining the sim-
ple decay kinetics of 5-FTrp embedded in a protein (Liu 
et al. 2005). Several azaTrp derivatives and 5-hydroxyTrp 
(5-OHTrp), with red-shifted absorption spectra that allow 
for selective excitation in the presence of multiple native 
Trp residues, have also been introduced in proteins using 
Trp auxotrophic expression hosts (Ross et al. 1992; Hogue 
et  al. 1992; Soumillion et  al. 1995; Twine et  al. 2003a; 
Lepthien et al. 2008). These analogs can be excited using 
wavelengths of up to ~315 nm, enabling their specific exci-
tation under most in vitro conditions (Ross et  al. 1997) 
and sometimes also using in vivo conditions (Broos et al. 
1999). A protein containing a Trp analog that allows for 
excitation at higher wavelengths is expected to give sig-
nificant less autofluorescence when analyzed under in vivo 
conditions; however, production of such a protein has not 
been reported to date.

Almost 30  years ago, Hudson et  al. speculated 
that replacing the indole moiety of Trp by the pseudo-
isosteric azulene moiety could result in a very attrac-
tive fluorophore for incorporation in proteins (Hudson 
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introduced this way in proteins features many attractive 
spectroscopic properties, particularly suitable for in vivo 
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Tryptophan (Trp) is one of the most popular fluorescent probes 
in the life sciences because it is an intrinsic fluorophore that is 
highly sensitive to structural changes in its microenvironment. 
Often a wild-type protein can be used for investigating protein 
conformational changes, folding or unfolding processes or its 
interactions with ligands or other proteins. However, obtaining 
site-specific information requires proteins that contain only a 
single Trp residue in most cases.

Trp has also some disadvantages as a spectroscopic 
probe; its photostability is limited and its photophysics 
are complex due to a relatively low ionization potential 
(IP) and spectral overlap of the two lowest excited states, 
1La and 1Lb (Callis 1997, 2009). Trp needs to be excited 
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et  al. 1986). Azulene shows a quite strong 1La absorp-
tion band centered at 320–380  nm (ε~4200  cm−1  M−1) 
(Moroz et al. 2013) and a weak 1Lb absorbance at 600 nm 
(ε~400 cm−1 M−1). The latter absorbance band gives azu-
lene its characteristic dark blue color. Excitation at this 
wavelength does not result in measurable fluorescence 
signal while excitation in the 1La band yields an emission 
band centered around 380 nm with a quantum yield com-
parable to Trp. Thus in azulene the 1La and 1Lb states do 
not overlap, the IP is relatively high, and the decay kinet-
ics are simple (Hudson et  al. 1986; Moroz et  al. 2013). 
Moreover, a high photostability of azulene was reported 
(Muller-Werkmeister and Bredenbeck 2014) and we 
have recently also shown that the azulene moiety exhib-
its weak environmental dependence and thus allows for 
using weak intrinsic quenchers, such as methionines, to 
monitor protein–protein interactions while not perturb-
ing them (Moroz et al. 2013). Synthesis of an amino acid 
with an azulene moiety has been described but its bio-
synthetic incorporation in proteins could not be achieved 
(Hudson et al. 1986; Ross et al. 1997; Loidl et al. 2000; 
Moroz et al. 2013).

The enzyme tryptophanyl-tRNA synthetase (TrpRS) 
gives the Trp translation pathway its high fidelity and the 
most important molecular determinant for its specificity is 
realizing a H-bond between N-1 of indole and a conserved 
Asp residue in the active site (Doublie et al. 1995; Anton-
czak et  al. 2011). Azulene cannot provide such H-bond 
when bound in the active site and this might offer an expla-
nation why AzAla so far could not be biosynthetically 
incorporated using an amino acid tRNA synthetase evolved 
by directed evolution (Xie and Schultz 2006).

We created a Trp auxotroph (PA1002) of the gram-posi-
tive bacterium Lactococcus lactis (L. lactis) (Khattabi et al. 
2008), because L. lactis is an attractive host for recombi-
nant production of proteins including membrane proteins 
(Kunji et  al. 2003). A more relaxed substrate specificity 
towards Trp analogs was observed compared to E. coli Trp 
auxotrophic strains (Khattabi et  al. 2008). To explore the 
potential of L. lactis for the incorporation of Trp analogs 
further, the endogenous tryptophanyl-tRNA synthetase 

(lacTrpRS) was cloned and co-expressed together with a 
target protein (Petrovic et  al. 2013). This expression sys-
tems translates Trp analogs, labeled with bulky substituents 
such as bromime or chlorine, with very high efficiencies 
(>89  %), making it the most versatile Trp analog expres-
sion system known.

Here we report our results about the biosynthetic 
incorporation of β-(1-azulenyl)-l-alanine (AzAla) in 
recombinant proteins using this expression system. A 
transcriptional regulatory protein from L. lactis (LmrR) 
was used as model protein; this protein controls the 
expression of a major multidrug transporter LmrCD 
(Agustiandari et  al. 2008; Madoori et  al. 2009). LmrR 
has two Trp residues at positions 67 and 96, as well as 
a Trp in the engineered C-terminal strep-tag at posi-
tion 120. The gene was introduced in a nisin-inducible 
expression vector (pNSC8048-lmrR) (Agustiandari 
et  al. 2008) and this plasmid, as well as the pMG36e-
trpRS plasmid harboring the lacTrpRS gene (Petro-
vic et  al. 2013), was electroporated in L. lactis P1002. 
Incorporation of azulene in LmrR proceeded essentially 
as described before for the incorporating of Trp analogs 
bearing bulky substituents such as 5-bromo-tryptophan 
(Petrovic et  al. 2013). In brief, an overnight culture 
was prepared at 30  °C by transferring a single colony 
in GM17 medium, containing two antibiotic markers, 
chloroamphenicol (5  µg/ml) and erythromycin (75  µg/
ml); the overnight culture was used to inoculate (1:50) 
a fresh culture of the same medium at 30  °C. When an 
OD600  =  0.8 was reached, cells were pelleted down, 
washed with PBS, and resuspended in the same vol-
ume of a chemically defined medium (CDM) contain-
ing 1 mM AzAla but no Trp. After 4 h at 30 °C, LmrR 
expression was induced by nisin as previously described 
(El Khattabi et  al. 2008) and induction was continued 
overnight at 30 °C. LmrR was isolated using a heparine 
column (Madoori et al. 2009) and the yield of the puri-
fied protein was 2–3 times lower compared to the CDM 
medium supplemented with Trp. A tryptic digest was 
analyzed by MALDI-TOF (Petrovic et al. 2013) and the 
MALDI spectra for the three tryptic peptides of LmrR, 

Scheme 1   Structures of Trp and some Trp analogs
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containing the Trp positions, are shown in Fig. 1. High 
incorporation efficiency of AzAla was observed in each 
position: >80 % for position 67, >75 % for position 96, 
and >90  % for position 120. Variation of Trp analog 
incorporation efficiency for different positions in the 
same protein is not uncommon (Abbott et al. 2004).

As second model protein, double Trp lysM tandem pro-
tein (Petrovic et  al. 2012) was expressed using the same 
protocol. This protein consists of two identical lysin motifs 
(LysM); each domain has a Trp residue at position 14. 
Expression of this protein in the presence of AzAla was also 
2–3 times lower than when the CDM medium was supple-
mented with Trp. MALDI analysis of a tryptic digest of the 
expressed protein revealed an incorporation efficiency of 
>75 % (Fig. 1d).

In conclusion, the availability of an efficient synthetic 
route for AzAla (Loidl et  al. 2000; Moroz et  al. 2013) 
and its biosynthetic incorporation using a L. lactus Trp 
auxotroph, co-expressing lacTrpRS (Petrovic et al. 2013), 
enables the straightforward production of proteins con-
taining AzAla at Trp positions. These proteins, structur-
ally and functionally expected to be essentially the same 
as the wild-type proteins (Speight et  al. 2014), can be 
characterized with various spectroscopic techniques such 
as fluorescence, absorbance, and Raman spectroscopy at 
uniquely long wavelengths that could not be used before 
for any other pseudo-isosteric analogs of Trp. Significant 
advantages in monitoring expression, localization, and 
biophysical characterization of proteins under various 
conditions (including in vivo) with AzAla as probe are 
foreseen.
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