14 research outputs found

    Atomic and electronic structure of graphene oxide/Cu interface

    Full text link
    The results of X-ray photoemission (XPS) and valence bands spectroscopy, optically stimulated electron emission (OSEE) measurements and density functional theory based modeling of graphene oxide (GO) placed on Cu via an electrophoretic deposition (EPD) are reported. The comparison of XPS spectra of EPD prepared GO/Cu composites with those of as prepared GO, strongly reduced GO, pure and oxidized copper demonstrate the partial (until C/O ratio about two) removal of oxygen-containing functional groups from GO simultaneously with the formation of copper oxide-like layers over the metallic substrate. OSEE measurements evidence the presence of copper oxide phase in the systems simultaneously with the absence of contributions from GO with corresponding energy gap. All measurements demonstrate the similarity of the results for different thickness of GO cover of the copper surface. Theoretical modeling demonstrates favorability of migration of oxygen-containing functional groups from GO to the copper substrate only for the case of C/O ratio below two and formation of Cu-O-C bonds between substrate and GO simultaneously with the vanishing of the energy gap in GO layer. Basing on results of experimental measurements and theoretical calculations we suggest the model of atomic structure for Cu/GO interface as Cu/CuO/GO with C/O ratio in gapless GO about two.Comment: 22 pages, 14 figures, accepted to Thin Solid Films journa

    Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension

    Full text link
    The surface modification of titanium alloys is an effective method to improve their biocompatibility and tailor the material to the desired profile of implant functionality. In this work, technologically-advanced titanium alloys—Ti-15Mo, Ti-13Nb-13Zr and Ti-6Al-7Nb—were anodized in suspensions, followed by treatment in alkali solutions, with wollastonite deposition from the powder phase suspended in solution. The anodized samples were immersed in NaOH or KOH solution with various concentrations with a different set of temperatures and exposure times. Based on their morphologies (observed by scanning electron microscope), the selected samples were investigated by Raman and X-ray photoelectron spectroscopy (XPS). Titaniate compounds were formed on the previously anodized titanium surfaces. The surface wettability significantly decreased, mainly on the modified Ti-15Mo alloy surface. Titanium alloy compounds had an influence on the results of the titanium alloys’ surface modification, which caused the surfaces to exhibit differential physical properties. In this paper, we present the influence of the anodization procedure on alkali treatment effects and the properties of obtained hybrid coatings

    Influence of ion migration from ITO and SiO2 substrates on photo and thermal stability of CH3NH3SnI3 hybrid perovskite

    No full text
    et al.The influence of light soaking and heat stress on the degradation of indium tin oxide (ITO)/CH3NH3SnI3 and SiO2/CH3NH3SnI3 hybrid perovskite is studied. The measurements of X-ray photoelectron survey spectra (XPS) showed an increase in the concentration of substrate ions in the surface layer of ITO/CH3NH3SnI3 and reduction of N:Sn and I:Sn ratios after 500 h of white light irradiation and 200 h of annealing at 90 °C. The high-energy-resolved XPS Sn three-dimensional (3d) spectra of ITO/CH3NH3SnI3 indicated a consistent increase in the contribution of Sn4+ ions at these exposure times under light soaking and heat stress. Scanning electron microscopy (SEM) measurements show a violation of the continuity of the perovskite layer with the exposure time and an increase in the size of the voids, which is consistent with the indicated changes in the XPS spectra. On the other hand, we consider the effect of irradiation and annealing on the diffusion of the substrate elements and their chemical interaction with the overlying perovskite layers. The XPS Sn 3d, O 1s, and valence band (VB) measurements and density functional theory (DFT) calculations reveal that at the initial stages of CH3NH3SnI3 degradation, the SnI4 phase separation occurs and with a further increase in exposure time, tin is oxidized to form a SnO2 phase. In addition, we found that CH3NH3SnI3 perovskite prepared on a SiO2 substrate is more stable than on an ITO substrate, and the effect of the oxidation of tin atoms due to the migration of oxygen ions is very weak. The theoretical modeling demonstrates that the formation of SnI2 defects in CH3NH3SnI3 became irreversible due to the oxidation by the migration of the oxygen ions from the substrate. The calculated formation energy of an oxygen vacancy in ITO is about 2 times smaller than in SiO2 that explains the instability of ITO/CH3NH3SnI3.This work is supported by the Russian Science Foundation (Project 19-73-30020). The XPS measurements were supported by the Russian Foundation for Basic Research (Project 20-42-660003), the Ministry of Education and Science of Russia (Act 211, Agreement No. 02.A03.21.0006), and Theme “Electron” No. AAAA-A18-118020190098-5.Peer reviewe

    Nickel(II) and Copper(II) Coordination Polymers Derived from 1,2,4,5-Tetraaminobenzene for Lithium-Ion Batteries

    No full text
    Highly conductive electrochemically active materials are required for developing a new generation of ultrafast lithium-ion batteries (LIBs). Recently, a novel family of transition metal coordination polymers derived from arylamines exhibited conductivities of over 1 S cm(-1). Low molecular weight analogues of these materials show rich and reversible electrochemical behavior. However, there are just very few reports on the application of such materials in LIBs. In this paper, linear nickel(II) and copper(II) coordination coordination polymers derived from 1,2,4,S-tetraaminobenzene are reported and investigated as anode and cathode materials for LIBs. In the anode mode, both materials show ultrafast cycling behavior with impressive stability. Particularly, for the nickel-based material, a specific capacity of 83 mA h g(-1) is reached at 20 A g(-1) current density, and 79% of this capacity is retained after 20 000 cycles. Moreover, the copper-based polymer used as a cathode component shows a specific capacity of up to 262 mA h g(-1) in the voltage range of 1.5-4.1 V vs Li/Li+, which corresponds to the energy density of 616 W h kg(-1)

    Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends

    No full text
    The electronic structure of [6,6]-phenyl C61 butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), and P3HT/PCBM blends is studied using soft X-ray emission and absorption spectroscopy and density functional theory calculations. We find that annealing reduces the HOMO-LUMO gap of P3HT and P3HT/PCBM blends, whereas annealing has little effect on the HOMO-LUMO gap of PCBM. We propose a model connecting torsional disorder in a P3HT polymer to the HOMO-LUMO gap, which suggests that annealing helps to decrease the torsional disorder in the P3HT polymers. Our model is used to predict the characteristic length scales of the flat P3TH polymer segments in P3HT and P3HT/PCBM blends before and after annealing. Our approach may prove useful in characterizing organic photovoltaic devices in situ or even in operando

    Optical Transparency and Local Electronic Structure of Yb-Doped Y<sub>2</sub>O<sub>3</sub> Ceramics with Tetravalent Additives

    No full text
    The results of optical transmission and X-ray core-level spectra measurements of Yb:Y2O3 ceramics with different tetravalent sintering additives (ZrO2, CeO2 and HfO2) fabricated from nanopowders (produced by the laser ablation method) and then annealed at 1400 ℃ in air for 2 h are presented. It is found that the transmission values for ZrO2- and HfO2-doped ceramics at the lasing wavelengths are higher than those of CeO2-doped samples. The X-ray photoelectron spectra (XPS) O 1s spectra show that the relative intensity of oxygen defect peak detected for 3Yb:Y2O3 + 5CeO2 ceramics decreases substantially and consistently compared to that of 5Yb:Y2O3 + 5HfO2 and 3Yb:Y2O3 + 5ZrO2 samples. This can be attributed to a more complete filling of oxygen vacancies due to annealing-induced oxygen diffusion into the highly defective sintered ceramics. The measurements of XPS Ce 3d spectra showed that the insufficiently complete filling of the oxygen vacancies in the 3Yb:Y2O3 + 5CeO2 compound is due to the appreciable presence of trivalent cerium ions

    The appearance of Ti3+ states in solution-processed TiOx buffer layers in inverted organic photovoltaics

    Get PDF
    We study the low-temperature solution processed TiOx films and device structures using core level and valence X-ray photoelectron spectroscopy (XPS) and electronic structure calculations. We are able to correlate the fraction of Ti3+ present as obtained from Ti 2p core level XPS with the intensity of the defect states that appear within the band gap as observed with our valence XPS. Constructing an operating inverted organic photovoltaic (OPV) using the TiOx film as an electron selective contact may increase the fraction of Ti3+ present. We provide evidence that the number of charge carriers in TiOx can be significantly varied and this might influence the performance of inverted OPVs

    Influence of Oxygen Ion Migration from Substrates on Photochemical Degradation of CH3NH3PbI3 Hybrid Perovskite

    No full text
    Measurements of XPS survey, core levels (N 1s, O 1s, Pb 4f, I 3d), and valence band (VB) spectra of CH3NH3PbI3 (MAPbI3) hybrid perovskite prepared on different substrates (glass, indium tin oxide (ITO), and TiO2) aged under different light-soaking conditions at room temperature are presented. The results reveal that the photochemical stability of MAPbI3 depends on the type of substrate and gradually decreases when glass is replaced by ITO and TiO2. Also, the degradation upon exposure to visible light is accompanied by the formation of MAI, PbI2, and Pb0 products as shown by XPS core levels spectra. According to XPS O 1s and VB spectra measurements, this degradation process is superimposed on the partial oxidation of lead atoms in ITO/MAPbI3 and TiO2/MAPbI3, for which Pb–O bonds are formed due to the diffusion of the oxygen ions from the substrates. This unexpected interaction leads to additional photochemical degradation
    corecore