15 research outputs found

    Novel strategy to disrupt the nuclear pore barrier reversibly: Implications for nanomedicine

    Get PDF
    Several thousands of nuclear pore complexes (NPCs) perforate the nuclear envelope of each eukaryotic cell. These elaborate proteinaceous assemblies mediate all nucleocytoplasmic transport highly selectively through a central channel residing within a rigid and well-structured NPC scaffold. The selectivity of the NPCs is the major obstacle for non-viral gene therapy due to the prevention of exogenously applied therapeutic macromolecules from nuclear entry. Selectivity is attributed to highly dynamic and disordered Phenylalanine-Glycine rich proteins within the NPC central channel. The NPC scaffold poses an additional barrier-albeit ignored so far. We designed two distinct strategies to reversibly disrupt the NPC channel and scaffold in a separate fashion. Disruption of either is found to result in a significant increase of the NPC permeability and a combination of the two further intensifies the individual effects. The induced breakdown of the NPC permeability barrier may be exploited for gene therapeutic purposes

    RAB5A and TRAPPC6B are novel targets for Shiga toxin 2a inactivation in kidney epithelial cells

    Get PDF
    The cardinal virulence factor of human-pathogenic enterohaemorrhagic Escherichia coli (EHEC) is Shiga toxin (Stx), which causes severe extraintestinal complications including kidney failure by damaging renal endothelial cells. In EHEC pathogenesis, the disturbance of the kidney epithelium by Stx becomes increasingly recognised, but how this exactly occurs is unknown. To explore this molecularly, we investigated the Stx receptor content and transcriptomic profile of two human renal epithelial cell lines: highly Stx-sensitive ACHN cells and largely Stx-insensitive Caki-2 cells. Though both lines exhibited the Stx receptor globotriaosylceramide, RNAseq revealed strikingly different transcriptomic responses to an Stx challenge. Using RNAi to silence factors involved in ACHN cells’ Stx response, the greatest protection occurred when silencing RAB5A and TRAPPC6B, two host factors that we newly link to Stx trafficking. Silencing these factors alongside YKT6 fully prevented the cytotoxic Stx effect. Overall, our approach reveals novel subcellular targets for potential therapies against Stx-mediated kidney failure.publishedVersio

    AJAM-A–tetraspanin–αvβ5 integrin complex regulates contact inhibition of locomotion

    Get PDF
    Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell–cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell–matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.publishedVersio

    Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    Get PDF
    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC1. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized2, 3, 4, 5, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins5, 6, and is therefore not well understood. Here, we show that stiffness topography7 with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy2, 3, 4, 5. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel

    Nano-scale Biophysical and Structural Investigations on Intact and Neuropathic Nerve Fibers by Simultaneous Combination of Atomic Force and Confocal Microscopy

    No full text
    The links between neuropathies of the peripheral nervous system (PNS), including Charcot-Marie-Tooth1A and hereditary neuropathy with liability to pressure palsies, and impaired biomechanical and structural integrity of PNS nerves remain poorly understood despite the medical urgency. Here, we present a protocol describing simultaneous structural and biomechanical integrity investigations on isolated nerve fibers, the building blocks of nerves. Nerve fibers are prepared from nerves harvested from wild-type and exemplary PNS neuropathy mouse models. The basic principle of the designed experimental approach is based on the simultaneous combination of atomic force microscopy (AFM) and confocal microscopy. AFM is used to visualize the surface structure of nerve fibers at nano-scale resolution. The simultaneous combination of AFM and confocal microscopy is used to perform biomechanical, structural, and functional integrity measurements at nano- to micro-scale. Isolation of sciatic nerves and subsequent teasing of nerve fibers take ~45 min. Teased fibers can be maintained at 37°C in a culture medium and kept viable for up to 6 h allowing considerable time for all measurements which require 3–4 h. The approach is designed to be widely applicable for nerve fibers from mice of any PNS neuropathy. It can be extended to human nerve biopsies

    Facilitating plasmid nuclear delivery by interfering with the selective nuclear pore barrier

    Full text link
    Nuclear pore complexes (NPCs) are sophisticated transporters assembled from diverse proteins termed nucleoporins (Nups). They control all nucleocytoplasmic transport and form a stringent barrier between the cytosol and the nucleus. While selective receptor‐mediated transport enables translocation of macromolecules up to striking sizes approaching megadalton‐scale, the upper cutoff for diffusion is at 40 kDa. Raising the cutoff is of particular importance for nuclear delivery of therapeutic nanoparticles, for example, gene and chemotherapy. In this work, we set out to present compounds capable of raising the cutoff to an extent enabling nuclear delivery of 6 kbp pDNA (150 kDa) in cultured human vascular endothelial cells. Of all tested compounds one is singled out, 1,6‐hexanediol (1,6‐HD). Our observations reveal that 1,6‐HD facilitates nuclear delivery of pDNA in up to 10–20% of the tested cells, compared to no delivery at all in control conditions. It acts by interfering with bonds between Nups that occupy the NPC channel and confer transport selectivity. It also largely maintains cell viability even at high concentrations. We envisage that 1,6‐HD may serve as a lead substance and usher in the design of potent new strategies to increase nuclear delivery of therapeutic nanoparticles

    Clathrin inhibitor Pitstop-2 disrupts the nuclear pore complex permeability barrier

    Full text link
    Existence of a selective nucleocytoplasmic permeability barrier is attributed to Phenylalanine-Glycine rich proteins (FG-nups) within the central channel of the nuclear pore complex (NPC). Limited understanding of the FG-nup structural arrangement hinders development of strategies directed at disrupting the NPC permeability barrier. In this report we explore an alternative approach to enhancing the NPC permeability for exogenous macromolecules. We demonstrate that the recently discovered inhibitor of clathrin coat assembly Pitstop-2 compromises the NPC permeability barrier in a rapid and effective manner. Treatment with Pitstop-2 causes a collapse of the NPC permeability barrier and a reduction of Importin β binding accompanied by alteration of the NPC ultrastructure. Interestingly, the effects are induced by the same chemical agent that is capable of inhibiting clathrin-mediated endocytosis. To our knowledge, this is the first functional indication of the previously postulated evolutionary relation between clathrin and NPC scaffold proteins

    RAB5A and TRAPPC6B are novel targets for Shiga toxin 2a inactivation in kidney epithelial cells

    No full text
    The cardinal virulence factor of human-pathogenic enterohaemorrhagic Escherichia coli (EHEC) is Shiga toxin (Stx), which causes severe extraintestinal complications including kidney failure by damaging renal endothelial cells. In EHEC pathogenesis, the disturbance of the kidney epithelium by Stx becomes increasingly recognised, but how this exactly occurs is unknown. To explore this molecularly, we investigated the Stx receptor content and transcriptomic profile of two human renal epithelial cell lines: highly Stx-sensitive ACHN cells and largely Stx-insensitive Caki-2 cells. Though both lines exhibited the Stx receptor globotriaosylceramide, RNAseq revealed strikingly different transcriptomic responses to an Stx challenge. Using RNAi to silence factors involved in ACHN cells’ Stx response, the greatest protection occurred when silencing RAB5A and TRAPPC6B, two host factors that we newly link to Stx trafficking. Silencing these factors alongside YKT6 fully prevented the cytotoxic Stx effect. Overall, our approach reveals novel subcellular targets for potential therapies against Stx-mediated kidney failure
    corecore