28 research outputs found

    Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line

    Get PDF
    We introduce a 2D electronic spectroscopy setup in the UV spectral range in the partially collinear pump-probe geometry. The required interferometrically phase-locked few-optical-cycle UV pulse pair is generated by combining a passive birefringent interferometer in the visible and nonlinear phase transfer. This is achieved by sum-frequency generation between the phase-locked visible pulse pair and narrowband infrared pulses. We demonstrate a pair of 16-fs, 330-nm pulses whose delay is interferometrically stable with an accuracy better than λ/450. 2DUV maps of pyrene solution probed in the UV and visible spectral ranges are demonstrated

    Femtosecond laser microstructuring of alumina toughened zirconia for surface functionalization of dental implants

    Get PDF
    The continuous need for high-performance implants that can withstand mechanical loads while promoting implant integration into bone has focused recent research on the surface modification of hard ceramics. Their properties of biocompatibility, high mechanical and fatigue resistance and aesthetic color have contributed to its succefull applications in dentistry. Alumina toughened Zirconia (ATZ) has been gaining attention as a material for dental implants applications due to its advanced mechanical properties and minimal degradation at body temperature. Still, in order to improve tissue response to this bioinert material, additional modifications are desirable. Improving the surface functionality of this ceramic could lead to enhanced implant-tissue interaction and subsequently, a successful implant integration.In this work, microtopographies were developed on the surface of Alumina toughened Zirconia using an ultrafast laser methodology, aiming at improving the cellular response to this ceramic. Microscale grooves and grid-like geometries were produced on ATZ ceramics by femtosecond laser ablation, with a pulse width of 150 fs, wavelength of 800 nm and repetition rate of 1 kHz. The variation of surface topography, roughness, chemistry and wettability with different laser processing parameters was examined.Cell-surface interactions were evaluated for 7 days on both microstructured surfaces and a non-treated control with pre-osteoblasts, MC3T3-E1 cells. Both surface topographies showed to improve cell response, with increased metabolic activity when compared to the untreated control and modulating cell morphology up to 7 days.The obtained results suggest that femtosecond laser texturing may be a suitable non-contact methodology for creating tunable micro-scale surface topography on ATZ ceramics to enhance the biological response

    Ultra-short laser surface properties optimization of biocompatibility characteristics of 3D poly-ε-caprolactone and hydroxyapatite composite scaffolds

    Get PDF
    The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs—wood pile and snowflake—with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior

    Single-Step Process for Titanium Surface Micro- and Nano-Structuring and In Situ Silver Nanoparticles Formation by Ultra-Short Laser Patterning

    Get PDF
    Ultra-short laser (USL)-induced surface structuring combined with nanoparticles synthesis by multiphoton photoreduction represents a novel single-step approach for commercially pure titanium (cp-Ti) surface enhancement. Such a combination leads to the formation of distinct topographical features covered by nanoparticles. The USL processing of cp-Ti in an aqueous solution of silver nitrate (AgNO3) induces the formation of micron-sized spikes surmounted by silver nanoparticles (AgNPs). The proposed approach combines the structuring and oxidation of the Ti surface and the synthesis of AgNPs in a one-step process, without the use of additional chemicals or a complex apparatus. Such a process is easy to implement, versatile and sustainable compared to alternative methodologies capable of obtaining comparable results. Antimicrobial surfaces on medical devices (e.g., surgical tools or implants), for which titanium is widely used, can be realized due to the simultaneous presence of AgNPs and micro/nano-structured surface topography. The processed surfaces were examined by means of a scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and Raman spectroscopy. The surface morphology and the oxidation, quality and quantity of AgNPs were analyzed in relation to process parameters (laser scanning speed and AgNO3 concentration), as well as the effect of AgNPs on the Raman signal of Titanium oxide

    Femtosecond laser fabrication of engineered functional surfaces based on biodegradable polymer and biopolymer/ceramic composite thin films

    No full text
    Surface functionalization introduced by precisely-defined surface structures depended on the surface texture and quality. Laser treatment is an advanced, non-contact technique for improving the biomaterials surface characteristics. In this study, femtosecond laser modification was applied to fabricate diverse structures on biodegradable polymer thin films and their ceramic blends. The influences of key laser processing parameters like laser energy and a number of applied laser pulses (N) over laser-treated surfaces were investigated. The modification of surface roughness was determined by atomic force microscopy (AFM). The surface roughness (R-rms) increased from approximately 0.5 to nearly 3 mu m. The roughness changed with increasing laser energy and a number of applied laser pulses (N). The induced morphologies with different laser parameters were compared via Scanning electron microscopy (SEM) and confocal microscopy analysis. The chemical composition of exposed surfaces was examined by FTIR, X-ray photoelectron spectroscopy (XPS), and XRD analysis. This work illustrates the capacity of the laser microstructuring method for surface functionalization with possible applications in improvement of cellular attachment and orientation. Cells exhibited an extended shape along laser-modified surface zones compared to non-structured areas and demonstrated parallel alignment to the created structures. We examined laser-material interaction, microstructural outgrowth, and surface-treatment effect. By comparing the experimental results, it can be summarized that considerable processing quality can be obtained with femtosecond laser structuring
    corecore