5 research outputs found

    Технология лекарственных средств - на съездах фармацевтов БССР и Республики Беларусь

    Get PDF
    Transition metal defects were studied in different polytypes of silicon carbide (SiC) by ab initio supercell calculations. We found asymmetric split-vacancy (ASV) complexes for these defects that preferentially form at only one site in hexagonal polytypes, and they may not be detectable at all in cubic polytype. Electron spin resonance study demonstrates the existence of ASV complex in niobium doped 4H polytype of SiC.Funding Agencies|Swedish Foundation for Strategic Research||Swedish Research Council||Swedish Energy Agency||Swedish National Infrastructure for Computing|SNIC 011/04-8SNIC001-10-223|Knut and Alice Wallenberg Foundation|

    Electrically driven optical interferometry with spins in silicon carbide

    Get PDF
    Interfacing solid-state defect electron spins to other quantum systems is an ongoing challenge. The ground-state spin's weak coupling to its environment bestows excellent coherence properties, but also limits desired drive fields. The excited-state orbitals of these electrons, however, can exhibit stronger coupling to phononic and electric fields. Here, we demonstrate electrically driven coherent quantum interference in the optical transition of single, basally oriented divacancies in commercially available 4H silicon carbide. By applying microwave frequency electric fields, we coherently drive the divacancy's excited-state orbitals and induce Landau-Zener-Stuckelberg interference fringes in the resonant optical absorption spectrum. Additionally, we find remarkably coherent optical and spin subsystems enabled by the basal divacancy's symmetry. These properties establish divacancies as strong candidates for quantum communication and hybrid system applications, where simultaneous control over optical and spin degrees of freedom is paramount.Comment: 17 pages, 4 figure

    Identification of divacancy and silicon vacancy qubits in 6H-SiC

    No full text
    Negatively charged silicon vacancy and the neutral divacancy in SiC are known as point defects which are relevant for use in quantum technologies as room temperature qubits and single photon emitters. The possible nonequivalent configurations of these defects have been identified in 4H-SiC. However, those in 6H-SiC have not yet been well-understood. In this paper, we identify the different configurations of the silicon vacancy and the divacancy defects to each of the V1-V3 and the QL1-QL6 color centers in 6H-SiC, respectively. We accomplish this by comparing the results from ab initio calculations with experimental measurements for the zerophonon line, hyperfine tensor, and zero-field splitting

    Electron paramagnetic resonance and theoretical studies of Nb in 4H- and 6H-SiC

    No full text
    High purity silicon carbide (SiC) materials are of interest from high-power high temperature applications across recent photo-voltaic cells to hosting solid state quantum bits, where the tight control of electrically, optically, and magnetically active point defects is pivotal in these areas. 4H- and 6H-SiC substrates are grown at high temperatures and the incorporation of transition metal impurities is common. In unintentionally Nb-doped 4H- and 6H-SiC substrates grown by high-temperature chemical vapor deposition, an electron paramagnetic resonance (EPR) spectrum with C-1h symmetry and a clear hyperfine (hf) structure consisting of ten equal intensity hf lines was observed. The hf structure can be identified as due to the interaction between the electron spin S - 1/2 and the nuclear spin of Nb-93. Additional hf structures due to the interaction with three Si neighbors were also detected. In 4H-SiC, a considerable spin density of similar to 37.4% was found on three Si neighbors, suggesting the defect to be a complex between Nb and a nearby carbon vacancy (V-C). Calculations of the Nb-93 and Si-29 hf constants of the neutral Nb on Si site, Nb-Si(0), and the Nb-vacancy defect, NbSiVC0, support previous reported results that Nb preferentially forms an asymmetric split-vacancy (ASV) defect. In both 4H- and 6H-SiC, only one Nb-related EPR spectrum has been observed, supporting the prediction from calculations that the hexagonal-hexagonal defect configuration of the ASV complex is more stable than others.Funding Agencies|Swedish Energy Agency||Swedish Research Council VR/Linne Environment LiLI-NFM, FP7|270197|NHDP|TAMOP-4.2.1/B-09/1/KMR-2010-0002|Swedish National Infrastructure for Computing||Knut and Alice Wallenberg Foundation||</p

    Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface

    No full text
    The divacancies in Silicon Carbide are a family of paramagnetic defects that show promise for quantum technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. It is demonstrated that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already almost the same as those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time
    corecore