18 research outputs found

    The path forward cheminformatics-driven reliable predictions for mixtures

    Get PDF
    UID/QUI/50006/2020 ERC-2016-CoG 725034Deep eutectic solvents (DES) are often regarded as greener sustainable alternative solvents and are currently employed in many industrial applications on a large scale. Bearing in mind the industrial importance of DES—and because the vast majority of DES has yet to be synthesized—the development of cheminformatic models and tools efficiently profiling their density becomes essential. In this work, after rigorous validation, quantitative structure-property relationship (QSPR) models were proposed for use in estimating the density of a wide variety of DES. These models were based on a modelling dataset previously employed for constructing thermodynamic models for the same endpoint. The best QSPR models were robust and sound, performing well on an external validation set (set up with recently reported experimental density data of DES). Furthermore, the results revealed structural features that could play crucial roles in ruling DES density. Then, intelligent consensus prediction was employed to develop a consensus model with improved predictive accuracy. All models were derived using publicly available tools to facilitate easy reproducibility of the proposed methodology. Future work may involve setting up reliable, interpretable cheminformatic models for other thermodynamic properties of DES and guiding the design of these solvents for applications.publishersversionpublishe

    On the thickness of the double layer in ionic liquids

    Full text link
    In this study, we examined the thickness of the electrical double layer (EDL) in ionic liquids using density functional theory (DFT) calculations and molecular dynamics (MD) simulations. We focused on the BF4- anion adsorption from 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) ionic liquid on the Au(111) surface. At both DFT and MD levels, we evaluated the capacitance-potential dependence for the Helmholtz model of the interface. Using MD simulations, we also explored a more realistic, multilayer EDL model accounting for the ion layering. Concurrent analysis of the DFT and MD results provides a ground for thinking whether the electrical double layer in ionic liquids is one- or multi-ionic-layer thick

    Computational Modelling and Sustainable Synthesis of a Highly Selective Electrochemical MIP-Based Sensor for Citalopram Detection

    Get PDF
    A novel molecularly imprinted polymer (MIP) has been developed based on a simple and sustainable strategy for the selective determination of citalopram (CTL) using screen-printed carbon electrodes (SPCEs). The MIP layer was prepared by electrochemical in situ polymerization of the 3-amino-4 hydroxybenzoic acid (AHBA) functional monomer and CTL as a template molecule. To simulate the polymerization mixture and predict the most suitable ratio between the template and functional monomer, computational studies, namely molecular dynamics (MD) simulations, were carried out. During the experimental preparation process, essential parameters controlling the performance of the MIP sensor, including CTL:AHBA concentration, number of polymerization cycles, and square wave voltammetry (SWV) frequency were investigated and optimized. The electrochemical characteristics of the prepared MIP sensor were evaluated by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Based on the optimal conditions, a linear electrochemical response of the sensor was obtained by SWV measurements from 0.1 to 1.25 µmol L−1 with a limit of detection (LOD) of 0.162 µmol L−1 (S/N = 3). Moreover, the MIP sensor revealed excellent CTL selectivity against very close analogues, as well as high imprinting factor of 22. Its applicability in spiked river water samples demonstrated its potential for adequate monitoring of CTL. This sensor offers a facile strategy to achieve portability while expressing a willingness to care for the environmentPatrícia Rebelo (SFRH/BD/132384/2017) and João Pacheco (SFRH/BPD/101419/2014) are grateful to Fundação para a Ciência e a Tecnologia (FCT) and European Union (EU) for their grants, financed by POPH-QREN-Tipologia 4.1-Formação Avançada, funded by Fundo Social Europeu (FSE) and Ministério da Ciência, Tecnologia e Ensino Superior (MCTES). Isabel Seguro is grateful to the project Farmasense (39957) that was funded by Sistema de Incentivos à Investigação e Desenvolvimento Tecnológico de Portugal 2020, through the Programa Operacional do Norte (NORTE 2020) and the Fundo Europeu de Desenvolvimento Regional (FEDER). This work was further supported by UID/QUI/50006/2020 (LAQV-REQUIMTE) and the project PTDC/QUI-QAN/3899/2021 with funding from FCT/MCTES through national funds. The research was funded also by FCT and BiodivRestore Joint Call 2020–2021-European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003777-BiodivRestore-406/DivRestore/0002/2020-BioReset-“Biodiversity restoration and conservation of inland water ecosystems for environmental and human well-being”info:eu-repo/semantics/publishedVersio

    The Okla. Guide

    No full text
    Weekly African-American newspaper from Guthrie, Oklahoma that includes local, state, and national news along with advertising

    Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    No full text
    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis­(trifluoromethanesulfonyl)­imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cation–anion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove that three parameters per interaction site (atom diameter, depth of potential well, point electrostatic charge) provide a sufficient basis to predict thermodynamics (heat of vaporization, density), structure (radial distributions), and transport (diffusion, viscosity, conductivity) of ILs at room conditions and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia Lopes–Pádua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids

    Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties

    No full text
    Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis­(trifluoromethanesulfonyl)­imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cation–anion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove that three parameters per interaction site (atom diameter, depth of potential well, point electrostatic charge) provide a sufficient basis to predict thermodynamics (heat of vaporization, density), structure (radial distributions), and transport (diffusion, viscosity, conductivity) of ILs at room conditions and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia Lopes–Pádua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids

    Acetonitrile Boosts Conductivity of Imidazolium Ionic Liquids

    No full text
    We apply a new methodology in the force field generation (<i>Phys. Chem. Chem. Phys.</i> <b>2011</b>, <i>13</i>, 7910) to study binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). Each RTIL is composed of tetrafluoroborate (BF<sub>4</sub>) anion and dialkylimidazolium (MMIM) cations. The first alkyl group of MIM is methyl, and the other group is ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Upon addition of ACN, the ionic conductivity of RTILs increases by more than 50 times. It significantly exceeds an impact of most known solvents. Unexpectedly, long-tailed imidazolium cations demonstrate the sharpest conductivity boost. This finding motivates us to revisit an application of RTIL/ACN binary systems as advanced electrolyte solutions. The conductivity correlates with a composition of ion aggregates simplifying its predictability. Addition of ACN exponentially increases diffusion and decreases viscosity of the RTIL/ACN mixtures. Large amounts of ACN stabilize ion pairs, although they ruin greater ion aggregates
    corecore