11 research outputs found

    Equalization of CPM signals over doubly-selective aeronautical channels

    Get PDF
    Communication technologies have always been one of the fundamental milestones of the aeronautical environment. Despite the growing demand for high performances, the aviation context is reluctant to move towards new technologies. Common communication strategies are not suitable to transmit at very high data rates over time- and/or frequency-dispersive (i.e., doubly-selective) air-ground channels, therefore, new requirements have to be fulfilled by an incremental approach, that is, by updating some parts of the legacy systems. This thesis deals with receiver synthesis for aeronautical communication data-links employing continuous-phase modulated (CPM) signals over doubly-selective wireless communication channels. The goal is to design efficient and low-complexity time-varying equalizers, by exploiting all of the CPM signal features, in order to compensate for the effects due to the rapidly time-varying aeronautical channels. The application of the basis expansion model (BEM) to a typical aeronautical communication channel is considered and validated by computer simulations. The second-order statistical characterization of the pseudo-symbols arising from Laurent representation of CPM signals is introduced and discussed. Both linear time-varying (LTV) and widely-linear time-varying (WLTV) zero forcing (ZF) and minimum mean square error (MMSE) receiver structures for CPM signals operating over doubly-selective channels are proposed and implemented by using the BEM model for the channel. Monte Carlo simulation results, carried out in typical aeronautical scenarios, show that the proposed approaches are able to work satisfactorily also over rapidly time-varying channels

    Equalization Techniques of Control and Non-Payload Communication Links for Unmanned Aerial Vehicles

    Get PDF
    In the next years, several new applications involving unmanned aerial vehicles (UAVs) for public and commercial uses are envisaged. In such developments, since UAVs are expected to operate within the public airspace, a key issue is the design of reliable control and non-payload communication (CNPC) links connecting the ground control station to the UAV. At the physical layer, CNPC design must cope with time- and frequency-selectivity (so-called double selectivity) of the wireless channel, due to lowaltitude operation and flight dynamics of the UAV. In this paper, we consider the transmission of continuous phase modulated (CPM) signals for UAV CNPC links operating over doubly-selective channels. Leveraging on the Laurent representation for a CPM signal, we design a two-stage receiver: the first one is a linear time-varying (LTV) equalizer, synthesized under either the zero-forcing (ZF) or minimum mean-square error (MMSE) criterion; the second one recovers the transmitted symbols from the pseudo-symbols of the Laurent representation in a simple recursive manner. In addition to LTV-ZF and LTV-MMSE equalizers, their widely-linear versions are also developed, to take into account the possible noncircular features of the CPM signal. Moreover, relying on a basis expansion model (BEM) of the doubly-selective channel, we derive frequency-shift versions of the proposed equalizers, by discussing their complexity issues and proposing simplified implementations. Monte Carlo numerical simulations show that the proposed receiving structures are able to satisfactorily equalize the doubly-selective channel in typical UAV scenarios

    Enabling and Emerging Sensing Technologies for Crowd Management in Public Transportation Systems: A Review

    Full text link
    Management of crowd information in public transportation (PT) systems is crucial to foster sustainable mobility, by increasing the user's comfort and satisfaction during normal operation, as well as to cope with emergency situations, such as pandemic crises, as recently experienced with COVID-19 limitations. This paper presents a taxonomy and review of sensing technologies based on Internet of Things (IoT) for real-time crowd analysis, which can be adopted in various segments of the PT system (buses/trams/trains, railway/subway stations, and bus stops). To discuss such technologies in a clear systematic perspective, we introduce a reference architecture for crowd management, which employs modern information and communication technologies (ICT) in order to: (i) monitor and predict crowding events; (ii) adapt in real-time PT system operations, by modifying service frequency, timetables, routes, and so on; (iii) inform in realtime the users of the crowding status of the PT system, by means of electronic displays installed inside vehicles or at bus stops/stations, and/or by mobile transport applications. It is envisioned that the innovative crowd management functionalities enabled by ICT/IoT sensing technologies can be incrementally implemented as an add-on to traditional intelligent transportation system (ITS) platforms, which are already in use by major PT companies operating in urban areas. Moreover, it is argued that, in this new framework, additional services can be delivered, such as, e.g., on-line ticketing, vehicle access control and reservation in severely crowded situations, and evolved crowd-aware route planning.Comment: 15 pages, 2 figures, 2 tables, submitted to IEEE Sensors Journa

    Detection and blind channel estimation for UAV-aided wireless sensor networks in smart cities under mobile jamming attack

    No full text
    Unmanned aerial vehicles (UAVs) can be integrated into wireless sensor networks (WSNs) for smart city applications in several ways. Among them, a UAV can be employed as a relay in a “store-carry and forward” fashion by uploading data from ground sensors and metering devices and, then, downloading it to a central unit. However, both the uploading and downloading phases can be prone to potential threats and attacks. As a legacy from traditional wireless networks, the jamming attack is still one of the major and serious threats to UAV-aided communications, especially when also the jammer is mobile, e.g., it is mounted on a UAV or inside a terrestrial vehicle. In this paper, we investigate anti-jamming communications for UAV-aided WSNs operating over doubly-selective channels in the downloading phase. In such a scenario, the signals transmitted by the UAV and the malicious mobile jammer undergo both time dispersion due to multipath propagation effects and frequency dispersion caused by their mobility. To suppress high-power jamming signals, we propose a blind physical-layer technique that jointly detects the UAV and jammer symbols through serial disturbance cancellation based on symbol-level post-sorting of the detector output. Amplitudes, phases, time delays, and Doppler shifts – required to implement the proposed detection strategy – are blindly estimated from data through the use of algorithms that exploit the almost-cyclostationarity properties of the received signal and the detailed structure of multicarrier modulation format. Simulation results corroborate the anti-jamming capabilities of the proposed method, for different mobility scenarios of the jammer

    Second-Order Statistics of One-Sided CPM Signals

    No full text
    This letter deals with second-order statistics (SOS) of continuous-phase modulated (CPM) signals. To overcome some mathematical inconsistencies emerging from the idealized assumption that the CPM signal evolves from t = -∞, we consider a one-sided model for the signal, which starts from t = 0, noting also that such a model emerges naturally when building practical SOS estimators. On the basis of such a model, we first evaluate the SOS of the pseudosymbols, which arise when expressing a CPM signal in terms of its Laurent representation, as well as closed-form expressions of the cyclic autocorrelation and conjugate correlation functions of one-sided CPM signals

    Design and Performance Analysis of Channel Estimators Under Pilot Spoofing Attacks in Multiple-Antenna Systems

    No full text
    In multiple antenna systems employing time-division duplexing, spatial precoder design at the base station (BS) leverages channel state information acquired through uplink pilot transmission, under the assumption of channel reciprocity. Malicious eavesdroppers can start pilot spoofing attacks to alter such design, so as to improve their eavesdropping performance in downlink. The aim of this paper is to study the effects of pilot spoofing attacks on uplink channel estimation, by assuming that the BS knows the angle of arrivals (AoAs) of the legitimate channels. Specifically, after assessing the performance of the simple least squares estimator (LSE), we consider more sophisticated estimators, such as the maximum likelihood estimator (MLE) and different versions of the minimum mean square error estimator (MMSEE), involving different degrees of a priori information about the pilot spoofing attacks. Theoretical analysis and numerical simulations are used to compare the performance of such estimators. In particular, we analytically demonstrate that the spoofing effects in the high signal-to-noise regime can be completely suppressed, under certain conditions involving the AoAs of the legitimate and spoofing channels. Moreover, we show that even an imperfect knowledge of the AoAs and of the average transmission power of the spoofing signals allows the MLE and MMSEE to achieve significant performance gains over the LSE.Comment: 15 pages, 13 figures, accepted for publication in IEEE Transactions on Information Forensics and Securit
    corecore