258 research outputs found

    Toroidal, compression, and vortical dipole strengths in 144154^{144-154}Sm: Skyrme-RPA exploration of deformation effect

    Full text link
    A comparative analysis of toroidal, compressional and vortical dipole strengths in the spherical 144^{144}Sm and the deformed 154^{154}Sm is performed within the random-phase-approximation using a set of different Skyrme forces. Isoscalar (T=0), isovector (T=1), and electromagnetic excitation channels are considered. The role of the nuclear convection jconj_{\text{con}} and magnetization jmagj_{\text{mag}} currents is inspected. It is shown that the deformation leads to an appreciable redistribution of the strengths and causes a spectacular deformation splitting (exceeding 5 MeV) of the isoscalar compressional mode. In 154^{154}Sm, the μ\mu=0 and μ\mu=1 branches of the mode form well separated resonances. When stepping from 144^{144}Sm to 154^{154}Sm, we observe an increase of the toroidal, compression and vortical contributions in the low-energy region (often called pygmy resonance). The strength in this region seems to be an overlap of various excitation modes. The energy centroids of the strengths depend significantly on the isoscalar effective mass m0m_0. Skyrme forces with a large m0m_0 (typically m0/m0.81m_0/m \approx 0.8 - 1) seem to be more suitable for description of experimental data for the isoscalar giant dipole resonance.Comment: 13 pages, 10 figures, submitted to EJP

    Orbital magnetism in axially deformed sodium clusters: From scissors mode to dia-para magnetic anisotropy

    Get PDF
    Low-energy orbital magnetic dipole excitations, known as scissors mode (SM), are studied in alkali metal clusters. Subsequent dynamic and static effects are explored. The treatment is based on a self-consistent microscopic approach using the jellium approximation for the ionic background and the Kohn-Sham mean field for the electrons. The microscopic origin of SM and its main features (structure of the mode in light and medium clusters, separation into low- and high-energy plasmons, coupling high-energy M1 scissors and E2 quadrupole plasmons, contributions of shape isomers, etc) are discussed. The scissors M1 strength acquires large values with increasing cluster size. The mode is responsible for the van Vleck paramagnetism of spin-saturated clusters. Quantum shell effects induce a fragile interplay between Langevin diamagnetism and van Vleck paramagnetism and lead to a remarkable dia-para anisotropy in magnetic susceptibility of particular light clusters. Finally, several routes for observing the SM experimentally are discussed.Comment: 21 pages, 7 figure

    Removal of the center of mass in nuclei and its effects on 4He

    Get PDF
    Abstract The singular value decomposition of rectangular matrices is shown to provide the recipe for removing the center of mass spurious admixtures from the multiphonon basis generated by an equation of motion method for solving the nuclear eigenvalue problem. It works for any single particle basis without any energy restriction on the selection of the configurations. Its effects on 4He are illustrated

    Electromagnetic Modes in Deformed Nuclei

    Get PDF
    A strength function method is adopted to describe a coupling between electric and magnetic modes of different multipolarity. The collective vibrations are analysed for a separable residual interaction in the framework of the random-phase approximation. The coupling between M2M2 and E1E1 giant resonances is considered as an illustrative example.Comment: 7 pages (latex), 1 figure (ps file), an invited talk at the workshop "Symmetries and Spin - Praha 98", to be published in Czech.J.Phys., 199

    Infrared electron modes in light deformed clusters

    Full text link
    Infrared quadrupole modes (IRQM) of the valence electrons in light deformed sodium clusters are studied by means of the time-dependent local-density approximation (TDLDA). IRQM are classified by angular momentum components λμ=\lambda\mu =20, 21 and 22 whose μ\mu branches are separated by cluster deformation. In light clusters with a low spectral density, IRQM are unambiguously related to specific electron-hole excitations, thus giving access to the single-electron spectrum near the Fermi surface (HOMO-LUMO region). Most of IRQM are determined by cluster deformation and so can serve as a sensitive probe of the deformation effects in the mean field. The IRQM branch λμ=\lambda\mu =21 is coupled with the magnetic scissors mode, which gives a chance to detect the latter. We discuss two-photon processes, Raman scattering (RS), stimulated emission pumping (SEP), and stimulated adiabatic Raman passage (STIRAP), as the relevant tools to observe IRQM. A new method to detect the IRQM population in clusters is proposed.Comment: 22 pages, 6 figure

    High-energy scissors mode

    Get PDF
    All the orbital M1 excitations, at both low and high energies, obtained from a rotationally invariant QRPA, represent the fragmented scissors mode. The high-energy M1 strength is almost purely orbital and resides in the region of the isovector giant quadrupole resonance. In heavy deformed nuclei the high-energy scissors mode is strongly fragmented between 17 and 25 MeV (with uncertainties arising from the poor knowledge of the isovector potential). The coherent scissors motion is hindered by the fragmentation and B(M1)<0.25  μN2B(M1) < 0.25 \; \mu^2_N for single transitions in this region. The (e,e)(e,e^{\prime}) cross sections for excitations above 17 MeV are one order of magnitude larger for E2 than for M1 excitations even at backward angles.Comment: 20 pages in RevTEX, 5 figures (uuencoded,put with 'figures') accepted for publication in Phys.Rev.

    Competing electric and magnetic excitations in backward electron scattering from heavy deformed nuclei

    Get PDF
    Important E2E2 contributions to the (e,e)(e,e^{\prime}) cross sections of low-lying orbital M1M1 excitations are found in heavy deformed nuclei, arising from the small energy separation between the two excitations with IπK=2+1I^{\pi}K = 2^+1 and 1+1^+1, respectively. They are studied microscopically in QRPA using DWBA. The accompanying E2E2 response is negligible at small momentum transfer qq but contributes substantially to the cross sections measured at θ=165\theta = 165 ^{\circ} for 0.6<qeff<0.90.6 < q_{\rm eff} < 0.9 fm1^{-1} (40Ei7040 \le E_i \le 70 MeV) and leads to a very good agreement with experiment. The electric response is of longitudinal C2C2 type for θ175\theta \le 175 ^{\circ} but becomes almost purely transverse E2E2 for larger backward angles. The transverse E2E2 response remains comparable with the M1M1 response for qeff>1.2q_{\rm eff} > 1.2 fm1^{-1} (Ei>100E_i > 100 MeV) and even dominant for Ei>200E_i > 200 MeV. This happens even at large backward angles θ>175\theta > 175 ^{\circ}, where the M1M1 dominance is limited to the lower qq region.Comment: RevTeX, 19 pages, 8 figures included Accepted for publication in Phys Rev

    Scissors modes in triaxial metal clusters

    Get PDF
    We study the scissors mode (orbital M1 excitations) in small Na clusters, triaxial metal clusters Na12{\rm Na}_{12} and Na16{\rm Na}_{16} and the close-to-spherical Na9+{{\rm Na}_9}^+, all described in DFT with detailed ionic background. The scissors modes built on spin-saturated ground and spin-polarized isomeric states are analyzed in virtue of both macroscopic collective and microscopic shell-model treatments. It is shown that the mutual destruction of Coulomb and the exchange-correlation parts of the residual interaction makes the collective shift small and the net effect can depend on details of the actual excited state. The crosstalk with dipole and spin-dipole modes is studied in detail. In particular, a strong crosstalk with spin-dipole negative-parity mode is found in the case of spin-polarized states. Triaxiality and ionic structure considerably complicate the scissors response, mainly at expense of stronger fragmentation of the strength. Nevertheless, even in these complicated cases the scissors mode is mainly determined by the global deformation. The detailed ionic structure destroys the spherical symmetry and can cause finite M1 response (transverse optical mode) even in clusters with zero global deformation. But its strength turns out to be much smaller than for the genuine scissors modes in deformed systems.Comment: 17 pages, 5 figure
    corecore