42 research outputs found
Lunar International Science Coordination/Calibration Targets
A new era of international lunar exploration has begun and will expand over the next four years with data acquired from at least four sophisticated remote sensing missions: KAGUYA (SELENE) [Japan], Chang'E [China], Chandrayaan-l [India], and LRO [United States]. It is recognized that this combined activity at the Moon with modern sophisticated sensors wi II provide unprecedented new information about the Moon and will dramatically improve our understanding of Earth's nearest neighbor. It is anticipated that the blooming of scientific exploration of the Moon by nations involved in space activities will seed and foster peaceful international coordination and cooperation that will benefit all. Summarized here are eight Lunar International Science Coordination/Calibration Targets (L-ISCT) that are intended to a) allow cross-calibration of diverse multi-national instruments and b) provide a focus for training young scientists about a range of lunar science issues. The targets, discussed at several scientific forums, were selected for coordinated science and instrument calibration of orbital data. All instrument teams are encouraged to participate in a coordinated activity of early-release data that will improve calibration and validation of data across independent and diverse instruments
The back reaction and the effective Einstein's equation for the Universe with ideal fluid cosmological perturbations
We investigate the back reaction of cosmological perturbations on the
evolution of the Universe using the renormalization group method. Starting from
the second order perturbed Einstein's equation, we renormalize a scale factor
of the Universe and derive the evolution equation for the effective scale
factor which includes back reaction due to inhomogeneities of the Universe. The
resulting equation has the same form as the standard Friedman-Robertson-Walker
equation with the effective energy density and pressure which represent the
back reaction effect.Comment: 16 pages, to appear in Phys. Rev.
Back Reaction Problem in the Inflationary Universe
We investigate the back reaction of cosmological perturbations on an
inflationary universe using the renormalization-group method. The second-order
zero mode solution which appears by the nonlinearity of the Einstein equation
is regarded as a secular term of a perturbative expansion, we renormalized a
constant of integration contained in the background solution and absorbed the
secular term to this constant in a gauge-invariant manner. The resultant
renormalization-group equation describes the back reaction effect of
inhomogeneity on the background universe. For scalar type classical
perturbation, by solving the renormalization-group equation, we find that the
back reaction of the long wavelength fluctuation works as a positive spatial
curvature, and the short wavelength fluctuation works as a radiation fluid. For
the long wavelength quantum fluctuation, the effect of back reaction is
equivalent to a negative spatial curvature.Comment: 17 page
Renormalization Group Approach to Cosmological Back Reaction Problems
We investigated the back reaction of cosmological perturbations on the
evolution of the universe using the second order perturbation of the Einstein's
equation. To incorporate the back reaction effect due to the inhomogeneity into
the framework of the cosmological perturbation, we used the renormalization
group method. The second order zero mode solution which appears by the
non-linearities of the Einstein's equation is regarded as a secular term of the
perturbative expansion, we renormalized a constant of integration contained in
the background solution and absorbed the secular term to this constant. For a
dust dominated universe, using the second order gauge invariant quantity, we
derived the renormalization group equation which determines the effective
dynamics of the Friedman-Robertson-Walker universe with the back reaction
effect in a gauge invariant manner. We obtained the solution of the
renormalization group equation and found that perturbations of the scalar mode
and the long wavelength tensor mode works as positive spatial curvature, and
the short wavelength tensor mode as radiation fluid.Comment: 18 pages, revtex, to appear in Phys. Rev.
Mucosa-associated lymphoid tissue lymphoma and concurrent adenocarcinoma of the prostate
Primary mucosa-associated lymphoid tissue (MALT) lymphoma of the prostate is a rare disease that characteristically follows an indolent course. It is believed that infection or chronic inflammation may be triggers for malignant transformation in the prostate, but it is of unknown etiology. Reports of MALT lymphomas of the prostate with other concurrent primary prostate cancers are even more limited. We present the unique case of a 67-year-old male with concurrent adenocarcinoma of the prostate and primary MALT lymphoma of the prostate. The patient was treated with standard therapy for prostate adenocarcinoma, which would also treat a primary MALT lymphoma. He has been disease-free for over one year for both his primary malignancies. This case confirms that MALT lymphoma can arise concurrently with adenocarcinoma of the prostate
Immunological aspects in chronic lymphocytic leukemia (CLL) development
Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells