67 research outputs found

    Post-Ebola Awakening: Urgent Call for Investing in Maintaining Effective Preparedness Capacities at the National and Regional Levels in Sub-Saharan Africa

    Get PDF
    Background: The 2014 Ebola outbreak reminded us of the importance of preparedness for addressing health security threats. Learning from this experience, we aim to (1) enhance the understanding of preparedness by policy and decision makers, (2) discuss opportunities for Africa to invest in the prevention of health security threats, (3) highlight the value of investing in preventing health security threats, and (4) propose innovations to enhance investments for the prevention or containment of health security threats at the source.   Methods: We used observations of governments’ attitudes towards investing in preparedness for health security prevention or containment at the source. We conducted a literature review through PubMed, the World Wide Web, and Mendeley using the keywords: "health emergency financing", "investing in health threats prevention", and "stopping outbreaks at the source".   Results: Countries in sub-Saharan Africa invest inadequately towards building and maintaining critical capacities for preventing, detecting, and containing outbreaks at the source. Global health security emergency funding schemes target responses to outbreaks but neglect their prevention. Governments are not absorbing and maintaining adequately capacity built through GHS, World Bank, and development aid projects – a lost opportunity for building and retaining outbreak prevention capacity.   Recommendations: Governments should (1) allocate adequate national budgets for health honouring the Abuja and related commitments; (2) own and maintain capacities developed through International Development Aids, OH networks, research consortia and projects; (3) establish a regional health security threats prevention fund. The global community and scientists should (1) consider broadening existing health emergency funds to finance the prevention and containment outbreaks at the source and (2) Strengthen economic analyses and case studies as incentives for governments’ budget allocations to prevent health security threats

    Assessment of core capacities for the International Health Regulations (IHR[2005]) – Uganda, 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uganda is currently implementing the International Health Regulations (IHR[2005]) within the context of Integrated Disease Surveillance and Response (IDSR). The IHR(2005) require countries to assess the ability of their national structures, capacities, and resources to meet the minimum requirements for surveillance and response. This report describes the results of the assessment undertaken in Uganda.</p> <p>Methods</p> <p>We conducted a descriptive cross-sectional assessment using the protocol developed by the World Health Organisation (WHO). The data collection tools were adapted locally and administered to a convenience sample of HR(2005) stakeholders, and frequency analyses were performed.</p> <p>Results</p> <p>Ugandan national laws relevant to the IHR(2005) existed, but they did not adequately support the full implementation of the IHR(2005). Correspondingly, there was a designated IHR National Focal Point (NFP), but surveillance activities and operational communications were limited to the health sector. All the districts (13/13) had designated disease surveillance offices, most had IDSR technical guidelines (92%, or 12/13), and all (13/13) had case definitions for infectious and zoonotic diseases surveillance. Surveillance guidelines were available at 57% (35/61) of the health facilities, while case definitions were available at 66% (40/61) of the health facilities. The priority diseases list, surveillance guidelines, case definitions and reporting tools were based on the IDSR strategy and hence lacked information on the IHR(2005). The rapid response teams at national and district levels lacked food safety, chemical and radio-nuclear experts. Similarly, there were no guidelines on the outbreak response to food, chemical and radio-nuclear hazards. Comprehensive preparedness plans incorporating IHR(2005) were lacking at national and district levels. A national laboratory policy existed and the strategic plan was being drafted. However, there were critical gaps hampering the efficient functioning of the national laboratory network. Finally, the points of entry for IHR(2005) implementation had not been designated.</p> <p>Conclusions</p> <p>The assessment highlighted critical gaps to guide the IHR(2005) planning process. The IHR(2005) action plan should therefore be developed to foster national and international public health security.</p

    The Value Proposition of the Global Health Security Index

    Get PDF
    Infectious disease outbreaks pose major threats to human health and security. Countries with robust capacities for preventing, detecting and responding to outbreaks can avert many of the social, political, economic and health system costs of such crises. The Global Health Security Index (GHS Index)—the first comprehensive assessment and benchmarking of health security and related capabilities across 195 countries—recently found that no country is sufficiently prepared for epidemics or pandemics. The GHS Index can help health security stakeholders identify areas of weakness, as well as opportunities to collaborate across sectors, collectively strengthen health systems and achieve shared public health goals. Some scholars have recently offered constructive critiques of the GHS Index’s approach to scoring and ranking countries; its weighting of select indicators; its emphasis on transparency; its focus on biosecurity and biosafety capacities; and divergence between select country scores and corresponding COVID-19-associated caseloads, morbidity, and mortality. Here, we (1) describe the practical value of the GHS Index; (2) present potential use cases to help policymakers and practitioners maximise the utility of the tool; (3) discuss the importance of scoring and ranking; (4) describe the robust methodology underpinning country scores and ranks; (5) highlight the GHS Index’s emphasis on transparency and (6) articulate caveats for users wishing to use GHS Index data in health security research, policymaking and practice

    Nodding syndrome may be an autoimmune reaction to the parasitic worm Onchocerca volvulus

    Get PDF
    Nodding Syndrome (NS) is an epileptic disorder of unknown etiology that occurs in children in East Africa. There is an epidemiological association with Onchocerca volvulus, the parasite that causes onchocerciasis, but there is limited evidence that the parasite itself is neuroinvasive. We hypothesized that NS was an autoimmune-mediated disease, and using protein chip methodology, we detected autoantibodies to leiomodin-1 from patients with NS as compared to unaffected village controls. Leiomodin-1 autoantibodies were found in both the sera and cerebral spinal fluid from patients. Leiomodin-1 was found to be expressed in mature and developing human neurons in vitro and localized to the murine CA3 region of the hippocampus, Purkinje cells in the cerebellum and cortical neurons, structures that also appear to be affected in patients with NS. Antibodies targeting leiomodin-1 were neurotoxic in vitro and leiomodin-1 antibodies purified from patients with NS were cross-reactive to O. volvulus antigens. This study provides initial evidence supporting the hypothesis that NS is an autoimmune epileptic disorder caused by molecular mimicry with O. volvulus and suggests that patients may benefit from immune-modulatory therapie

    A large and persistent outbreak of typhoid fever caused by consuming contaminated water and street-vended beverages: Kampala, Uganda, January - June 2015.

    Get PDF
    BACKGROUND: On 6 February 2015, Kampala city authorities alerted the Ugandan Ministry of Health of a "strange disease" that killed one person and sickened dozens. We conducted an epidemiologic investigation to identify the nature of the disease, mode of transmission, and risk factors to inform timely and effective control measures. METHODS: We defined a suspected case as onset of fever (≥37.5 °C) for more than 3 days with abdominal pain, headache, negative malaria test or failed anti-malaria treatment, and at least 2 of the following: diarrhea, nausea or vomiting, constipation, fatigue. A probable case was defined as a suspected case with a positive TUBEX® TF test. A confirmed case had blood culture yielding Salmonella Typhi. We conducted a case-control study to compare exposures of 33 suspected case-patients and 78 controls, and tested water and juice samples. RESULTS: From 17 February-12 June, we identified 10,230 suspected, 1038 probable, and 51 confirmed cases. Approximately 22.58% (7/31) of case-patients and 2.56% (2/78) of controls drank water sold in small plastic bags (ORM-H = 8.90; 95%CI = 1.60-49.00); 54.54% (18/33) of case-patients and 19.23% (15/78) of controls consumed locally-made drinks (ORM-H = 4.60; 95%CI: 1.90-11.00). All isolates were susceptible to ciprofloxacin and ceftriaxone. Water and juice samples exhibited evidence of fecal contamination. CONCLUSION: Contaminated water and street-vended beverages were likely vehicles of this outbreak. At our recommendation authorities closed unsafe water sources and supplied safe water to affected areas

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    Marburg virus disease outbreak in Kween District Uganda, 2017: Epidemiological and laboratory findings.

    Get PDF
    INTRODUCTION: In October 2017, a blood sample from a resident of Kween District, Eastern Uganda, tested positive for Marburg virus. Within 24 hour of confirmation, a rapid outbreak response was initiated. Here, we present results of epidemiological and laboratory investigations. METHODS: A district task force was activated consisting of specialised teams to conduct case finding, case management and isolation, contact listing and follow up, sample collection and testing, and community engagement. An ecological investigation was also carried out to identify the potential source of infection. Virus isolation and Next Generation sequencing were performed to identify the strain of Marburg virus. RESULTS: Seventy individuals (34 MVD suspected cases and 36 close contacts of confirmed cases) were epidemiologically investigated, with blood samples tested for MVD. Only four cases met the MVD case definition; one was categorized as a probable case while the other three were confirmed cases. A total of 299 contacts were identified; during follow- up, two were confirmed as MVD. Of the four confirmed and probable MVD cases, three died, yielding a case fatality rate of 75%. All four cases belonged to a single family and 50% (2/4) of the MVD cases were female. All confirmed cases had clinical symptoms of fever, vomiting, abdominal pain and bleeding from body orifices. Viral sequences indicated that the Marburg virus strain responsible for this outbreak was closely related to virus strains previously shown to be circulating in Uganda. CONCLUSION: This outbreak of MVD occurred as a family cluster with no additional transmission outside of the four related cases. Rapid case detection, prompt laboratory testing at the Uganda National VHF Reference Laboratory and presence of pre-trained, well-prepared national and district rapid response teams facilitated the containment and control of this outbreak within one month, preventing nationwide and global transmission of the disease
    • …
    corecore