183 research outputs found

    Paediatric oncology in the Queen Elizabeth Central Hospital, Blantyre

    Get PDF
    In a developing country, where infection, malnutrition and HIV infection cause an enormous burden of childhood illnesses, cancer is, for many, not a priority. It is reported that globally 80% of the children who develop cancer have no or poor access to cancer treatment1 but childhood cancer is often curable and every child needs care, be it curative or palliative.Malawi Medical Journal Vol. 20 (4) 2008: pp. 115-11

    Diblock copolymers at a homopolymer-homopolymer-interface: a Monte Carlo simulation

    Get PDF
    The properties of diluted symmetric A-B diblock copolymers at the interface between A and B homopolymer phases are studied by means of Monte Carlo (MC) simulations of the bond fluctuation model. We calculate segment density profiles as well as orientational properties of segments, of A and B blocks, and of the whole chain. Our data support the picture of oriented ``dumbbells'', which consist of mildly perturbed A and B Gaussian coils. The results are compared to a self consistent field theory (SCFT) for single copolymer chains at a homopolymer interface. We also discuss the number of interaction contacts between monomers, which provide a measure for the ``active surface'' of copolymers or homopolymers close to the interface

    A Novel, Non-Apoptotic Role for Scythe/BAT3: A Functional Switch between the Pro- and Anti-Proliferative Roles of p21 during the Cell Cycle

    Get PDF
    BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.Dissertatio

    Pharmacological development of target-specific delocalized lipophilic cation-functionalized carboranes for cancer therapy

    Get PDF
    PURPOSE: Tumor cell heterogeneity and microenvironment represent major hindering factors in the clinical setting toward achieving the desired selectivity and specificity to malignant tissues for molecularly targeted cancer therapeutics. In this study, the cellular and molecular evaluation of several delocalized lipophilic cation (DLC)-functionalized carborane compounds as innovative anticancer agents is presented. METHODS: The anticancer potential assessment of the DLC-carboranes was performed in established normal (MRC-5, Vero), cancer (U-87 MG, HSC-3) and primary glioblastoma cancer stem (EGFRpos, EGFRneg) cultures. Moreover, the molecular mechanism of action underlying their pharmacological response is also analyzed. RESULTS: The pharmacological anticancer profile of DLC-functionalized carboranes is characterized by: a) a marked in vitro selectivity, due to lower concentration range needed (ca. 10 fold) to exert their cell growth-arrest effect on U-87 MG and HSC-3, as compared with that on MRC-5 and Vero; b) a similar selective growth inhibition behavior towards EGFRpos and EGFRneg cultures (>10 fold difference in potency) without, however, the activation of apoptosis in cultures; c) notably, in marked contrast to cancer cells, normal cells are capable of recapitulating their full proliferation potential following exposure to DLC-carboranes; and, d) such pharmacological effects of DLC-carboranes has been unveiled to be elicited at the molecular level through activation of the p53/p21 axis. CONCLUSIONS: Overall, the data presented in this work indicates the potential of the DLC-functionalized carboranes to act as new selective anticancer therapeutics that may be used autonomously or in therapies involving radiation with thermal neutrons. Importantly, such bifunctional capacity may be beneficial in cancer therapy

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    Collaborating in Africa-small steps to sustainable success

    No full text

    Endemic Burkitt’s Lymphoma

    No full text

    A novel role for vitamin K1 in a tyrosine phosphorylation cascade during chick embryogenesis.

    No full text
    • …
    corecore