18 research outputs found

    Pressure Support in Galaxy Disks: Impact on Rotation Curves and Dark Matter Density Profiles

    Full text link
    Rotation curves constrain a galaxy's underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds <75km/s, but are unlikely to be significant in higher mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in galaxies. Thus, while pressure support may alleviate possible tensions between rotation curve observations and LambdaCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.Comment: Accepted to the Astrophysical Journal; 18 pages including 5 pages of figure

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Measuring the War Experience: Ghanaian Soldiers in World War II

    No full text

    Physicians prescribe fewer analgesics during night shifts than day shifts

    No full text
    Adequate pain management is one of the biggest challenges of the modern healthcare system. Physician perception of patient subjective pain, which is crucial to pain management, is susceptible to a host of potential biases. Here we explore the timing of physicians' work as a previously unrecognized source of systematic bias in pain management. We hypothesized that during night shifts, sleep deprivation, fatigue, and stress would reduce physicians' empathy for others' pain, leading to underprescription of analgesics for patient pain relief. In study 1, 67 resident physicians, either following a night shift or not, performed empathy for pain assessment tasks and simulated patient scenarios in laboratory conditions. As predicted, following a night shift, physicians showed reduced empathy for pain. In study 2, we explored this phenomenon in medical decisions in the field. We analyzed three emergency department datasets from Israel and the United States that included discharge notes of patients arriving with pain complaints during 2013 to 2020 (n = 13,482). Across all datasets, physicians were less likely to prescribe an analgesic during night shifts (compared to daytime shifts) and prescribed fewer analgesics than generally recommended by the World Health Organization. This effect remained significant after adjusting for patient, physician, type of complaint, and emergency department characteristics. Underprescription for pain during night shifts was particularly prominent for opioids. We conclude that night shift work is an important and previously unrecognized source of bias in pain management, likely stemming from impaired perception of pain. We consider the implications for hospitals and other organizations employing night shifts

    Genetic Associations with Obstructive Sleep Apnea Traits in Hispanic/Latino Americans.

    No full text
    RationaleObstructive sleep apnea is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. Although there is strong clinical and epidemiologic evidence supporting the importance of genetic factors in influencing obstructive sleep apnea, its genetic basis is still largely unknown. Prior genetic studies focused on traits defined using the apnea-hypopnea index, which contains limited information on potentially important genetically determined physiologic factors, such as propensity for hypoxemia and respiratory arousability.ObjectivesTo define novel obstructive sleep apnea genetic risk loci for obstructive sleep apnea, we conducted genome-wide association studies of quantitative traits in Hispanic/Latino Americans from three cohorts.MethodsGenome-wide data from as many as 12,558 participants in the Hispanic Community Health Study/Study of Latinos, Multi-Ethnic Study of Atherosclerosis, and Starr County Health Studies population-based cohorts were metaanalyzed for association with the apnea-hypopnea index, average oxygen saturation during sleep, and average respiratory event duration.Measurements and main resultsTwo novel loci were identified at genome-level significance (rs11691765, GPR83, P = 1.90 × 10-8 for the apnea-hypopnea index, and rs35424364; C6ORF183/CCDC162P, P = 4.88 × 10-8 for respiratory event duration) and seven additional loci were identified with suggestive significance (P &lt; 5 × 10-7). Secondary sex-stratified analyses also identified one significant and several suggestive associations. Multiple loci overlapped genes with biologic plausibility.ConclusionsThese are the first genome-level significant findings reported for obstructive sleep apnea-related physiologic traits in any population. These findings identify novel associations in inflammatory, hypoxia signaling, and sleep pathways
    corecore