3 research outputs found

    Analysis of patterns of livestock movements in the Cattle Corridor of Uganda for risk-based surveillance of infectious diseases

    Get PDF
    IntroductionThe knowledge of animal movements is key to formulating strategic animal disease control policies and carrying out targeted surveillance. This study describes the characteristics of district-level cattle, small ruminant, and pig trade networks in the Cattle Corridor of Uganda between 2019 and 2021.MethodologyThe data for the study was extracted from 7,043 animal movement permits (AMPs) obtained from the Ministry of Agriculture, Animal Industry and Fisheries (MAAIF) of Uganda. Most of the data was on cattle (87.2%), followed by small ruminants (11.2%) and pigs (1.6%). Two types of networks representing animal shipments between districts were created for each species based on monthly (n = 30) and seasonal (n = 10) temporal windows. Measures of centrality and cohesiveness were computed for all the temporal windows and our analysis identified the most central districts in the networks.ResultsThe median in-degree for monthly networks ranged from 0–3 for cattle, 0–1 for small ruminants and 0–1 for pigs. The highest median out-degrees for cattle, small ruminant and pig monthly networks were observed in Lira, Oyam and Butambala districts, respectively. Unlike the pig networks, the cattle and small ruminant networks were found to be of small-world and free-scale topologies.DiscussionThe cattle and small ruminant trade movement networks were also found to be highly connected, which could facilitate quick spread of infectious animal diseases across these networks. The findings from this study highlighted the significance of characterizing animal movement networks to inform surveillance, early detection, and subsequent control of infectious animal disease outbreaks

    Anthrax bio-surveillance of livestock in Arua District, Uganda, 2017-2018

    Get PDF
    Altres ajuts: acords transformatius de la UABThe authors would like to express their gratitude to the local Sub-County chiefs, district veterinary officers, community elders, and kraal leaders for being supportive during data collection. Author JG has received mobility support from Universitat Autònoma de Barcelona (action Erasmus+ KA107 Mobility Fellowship) and was supported by the Generalitat de Catalunya, Agency for Management of University and Research Grants co-financed with the European Social Found (grants for the recruitment of new research staff 2018 FI_B 00236). Authors RAO, ME, MA, MFN, MI, EI, MM, LP, BS, and SAA were funded by Livestock Disease Control project II.Anthrax, caused by Bacillus anthracis, is a widespread zoonotic disease with many human cases, especially in developing countries. Even with its global distribution, anthrax is a neglected disease with scarce information about its actual impact on the community level. Due to the ecological dynamics of anthrax transmission at the wildlife-livestock interface, the Sub-Saharan Africa region becomes a high-risk zone for maintaining and acquiring the disease. In this regard, some subregions of Uganda are endemic to anthrax with regular seasonal trends. However, there is scarce data about anthrax outbreaks in Uganda. Here, we confirmed the presence of B. anthracis in several livestock samples after a suspected anthrax outbreak among livestock and humans in Arua District. Additionally, we explored the potential risk factors of anthrax through a survey within the community kraals. We provide evidence that the most affected livestock species during the Arua outbreak were cattle (86%) compared to the rest of the livestock species present in the area. Moreover, the farmers' education level and the presence of people's anthrax cases were the most critical factors determining the disease's knowledge and awareness. Consequently, the lack of understanding of the ecology of anthrax may contribute to the spread of the infection between livestock and humans, and it is critical to reducing the presence and persistence of the B. anthracis spores in the environment. Finally, we discuss the increasingly recognized necessity to strengthen global capacity using a One Health approach to prevent, detect, control, and respond to public threats in Uganda

    Seroprevalence of contagious bovine pleuropneumonia (CBPP) in cattle from Karamoja region, North-eastern Uganda

    No full text
    Abstract Background Contagious bovine pleuropneumonia [CBPP] is a transboundary animal disease of cattle caused by Mycoplasma mycoides subsp. mycoides [Mmm]. CBPP causes severe economic losses to livestock producers in sub-Saharan Africa mainly due to high mortality, morbidity, reduction in productivity as well as livestock trade restrictions. This study aimed at determining seroprevalence of Mmm in cattle from Karamoja region, north-eastern Uganda; data that are required to design and implement risk based CBPP control program. Methods We randomly collected blood samples from 2,300 cattle spread across Karamoja region. Serum was extracted and screened for antibodies against Mycoplasma mycoides subsp. mycoides [Mmm] using the competitive enzyme linked immunosorbent assay [cELISA]. Results A quarter [25.4%; 95% CI: 23.7–27.3] of the screened cattle [n = 2,300] were sero-positive for Mmm. Amudat and Kaabong districts recorded the lowest [12.3%] and highest [30.7%] Mmm seroprevalence respectively. Increasing age, overnight stay in cattle kraals and location [certain districts, villages, herds and sub counties] of the cattle herds, the factors that promote animal commingling, were the most significant risk factors of seroconversion with Mmm. Conclusion Results from this study indicated a higher seroprevalence of Mmm in Karamoja region cattle herds. This could be due to the increased frequency of CBPP outbreaks in recent years. To be effective, CBPP vaccination programs should target high risk herds along the international borders and other hotspot areas [e.g., parishes or sub counties] where cattle commingling is high
    corecore