5 research outputs found

    Measuring Paw Preferences in Dogs, Cats and Rats: Design Requirements and Innovations in Methodology

    No full text
    Studying behavioral lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviors between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioral lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioral lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species

    Prevalence ofPKD1gene mutation in cats in Turkey and pathogenesis of feline polycystic kidney disease

    No full text
    Isparta, Sevim/0000-0002-1575-7861; Bars, Zeynep/0000-0002-8116-1855; CINAR KUL, Bengi/0000-0002-8955-0097; Cildir, Ozge Sebnem/0000-0001-7070-4212WOS:000550747800007PubMed: 32687010Polycystic kidney disease (PKD) is one of the most common hereditary diseases in cats, with high prevalence in Persian and Persian-related cats. PKD is caused mainly by an inherited autosomal dominant (AD) mutation, and animals may be asymptomatic for years. We screened 16 cats from various breeds exhibiting a renal abnormality by ultrasound examination and genotyped them for the c.10063C>A transversion on exon 29 of the polycystin-1 (PKD1) gene, by PCR-restriction fragment length polymorphism (PCR-RFLP). Among these cats, a Siamese nuclear family of 4 cats with ancestral hereditary renal failure were screened by whole-genome sequencing (WGS) to determine novel variations in genes associated with both AD and autosomal recessive PKD in humans. During the study period, one cat died as a result of renal failure and was forwarded for autopsy. Additionally, we screened 294 cats asymptomatic for renal disease (Angora, Van, Persian, Siamese, Scottish Fold, Exotic Shorthair, British Shorthair, and mixed breeds) to determine the prevalence of the mutation in cats in Turkey. Ten of the symptomatic and 2 of the asymptomatic cats carried the heterozygous C -> A transversion, indicating a prevalence of 62.5% and 0.68%, respectively. In the WGS analysis of 4 cats in the Siamese nuclear family, novel variations were determined in the fibrocystin gene (PKHD1), which was not compatible with dominant inheritance of PKD

    AAV1 is the optimal viral vector for optogenetic experiments in pigeons (Columba livia)\textit {(Columba livia)}

    No full text
    Although optogenetics has revolutionized rodent neuroscience, it is still rarely used in other model organisms as the efficiencies of viral gene transfer differ between species and comprehensive viral transduction studies are rare. However, for comparative research, birds offer valuable model organisms as they have excellent visual and cognitive capabilities. Therefore, the following study establishes optogenetics in pigeons on histological, physiological, and behavioral levels. We show that AAV1 is the most efficient viral vector in various brain regions and leads to extensive anterograde and retrograde ChR2 expression when combined with the CAG promoter. Furthermore, transient optical stimulation of ChR2 expressing cells in the entopallium decreases pigeons' contrast sensitivity during a grayscale discrimination task. This finding demonstrates causal evidence for the involvement of the entopallium in contrast perception as well as a proof of principle for optogenetics in pigeons and provides the groundwork for various other methods that rely on viral gene transfer in birds

    Acute and chronic stress alter behavioral laterality in dogs

    No full text
    Dogs are one of the key animal species in investigating the biological mechanisms of behavioral laterality. Cerebral asymmetries are assumed to be influenced by stress, but this subject has not yet been studied in dogs. This study aims to investigate the effect of stress on laterality in dogs by using two different motor laterality tests: the KongTMKong^{TM} Test and a Food-Reaching Test (FRT). Motor laterality of chronically stressed (n = 28) and emotionally/physically healthy dogs (n = 32) were determined in two different environments, i.e., a home environment and a stressful open field test (OFT) environment. Physiological parameters including salivary cortisol, respiratory rate, and heart rate were measured for each dog, under both conditions. Cortisol results showed that acute stress induction by OFT was successful. A shift towards ambilaterality was detected in dogs after acute stress. Results also showed a significantly lower absolute laterality index in the chronically stressed dogs. Moreover, the direction of the first paw used in FRT was a good predictor of the general paw preference of an animal. Overall, these results provide evidence that both acute and chronic stress exposure can change behavioral asymmetries in dogs
    corecore