75 research outputs found

    Abnormal subgrain growth in a dislocation-based model of recovery

    Get PDF
    Simulation of subgrain growth during recovery is carried out using two-dimensional discrete dislocation dynamics on a hexagonal crystal lattice having three symmetric slip planes. To account for elevated temperature (i) dislocation climb was allowed and (ii) a Langevin type thermal noise was added to the force acting on the dislocations. During the simulation, a random ensemble of dislocations develop into subgrains and power-law type growth kinetics are observed. The growth exponent is found to be independent of the climb mobility, but dependent on the temperature introduced by the thermal noise. The in-depth statistical analysis of the subgrain structure shows that the coarsening is abnormal, i.e. larger cells grow faster than the small ones, while the average misorientation between the adjacent subgrains remains nearly constant. During the coarsening Holt's relation is found not to be fulfilled, such that the average subgrain size is not proportional to the average dislocation spacing. These findings are consistent with recent high precision experiments on recovery.Comment: 17 pages, 11 figure

    The role of weakest links and system size scaling in multiscale modeling of stochastic plasticity

    Get PDF
    Plastic deformation of crystalline and amorphous matter often involves intermittent local strain burst events. To understand the physical background of the phenomenon a minimal stochastic mesoscopic model was introduced, where microstructural details are represented by a fluctuating local yielding threshold. In the present paper, we propose a method for determining this yield stress distribution by lower scale discrete dislocation dynamics simulations and using a weakest link argument. The success of scale-linking is demonstrated on the stress-strain curves obtained by the resulting mesoscopic and the discrete dislocation models. As shown by various scaling relations they are statistically equivalent and behave identically in the thermodynamic limit. The proposed technique is expected to be applicable for different microstructures and amorphous materials, too.Comment: 13 pages, 12 figure

    Dynamic Length Scale and Weakest Link Behavior in Crystal Plasticity

    Full text link
    Plastic deformation of heterogeneous solid structures is often characterized by random intermittent local plastic events. On the mesoscale this feature can be represented by a spatially fluctuating local yield threshold. Here we study the validity of such an approach and the ideal choice for the size of the representative volume element for crystal plasticity in terms of a discrete dislocation model. We find that the number of links representing possible sources of plastic activity exhibits anomalous (super-extensive) scaling which tends to extensive scaling (often assumed in weakest-link models) if quenched short-range interactions are introduced. The reason is that the interplay between long-range dislocation interactions and short-range quenched disorder destroys scale-free dynamical correlations leading to event localization with a characteristic length-scale. Several methods are presented to determine the dynamic length-scale that can be generalized to other types of heterogeneous materials

    Submicron plasticity: yield stress, dislocation avalanches, and velocity distribution

    Full text link
    The existence of a well defined yield stress, where a macroscopic piece of crystal begins to plastically flow, has been one of the basic observations of materials science. In contrast to macroscopic samples, in micro- and nanocrystals the strain accumulates in distinct, unpredictable bursts, which makes controlled plastic forming rather difficult. Here we study by simulation, in two and three dimensions, plastic deformation of submicron objects under increasing stress. We show that, while the stress-strain relation of individual samples exhibits jumps, its average and mean deviation still specify a well-defined critical stress, which we identify with the jamming-flowing transition. The statistical background of this phenomenon is analyzed through the velocity distribution of short dislocation segments, revealing a universal cubic decay and an appearance of a shoulder due to dislocation avalanches. Our results can help to understand the jamming-flowing transition exhibited by a series of various physical systems.Comment: 5 page
    • …
    corecore