61 research outputs found

    TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling

    Get PDF
    The mammalian target of rapamycin (mTOR) pathway is commonly activated in human cancers. The activity of mTOR complex 1 (mTORC1) signaling is supported by the intracellular positioning of cellular compartments and vesicle trafficking, regulated by Rab GTPases. Here we showed that tuftelin 1 (TUFT1) was involved in the activation of mTORC1 through modulating the Rab GTPase-regulated process. TUFT1 promoted tumor growth and metastasis. Consistently, the expression of TUFT1 correlated with poor prognosis in lung, breast and gastric cancers. Mechanistically, TUFT1 physically interacted with RABGAP1, thereby modulating intracellular lysosomal positioning and vesicular trafficking, and promoted mTORC1 signaling. In addition, expression of TUFT1 predicted sensitivity to perifosine, an alkylphospholipid that alters the composition of lipid rafts. Perifosine treatment altered the positioning and trafficking of cellular compartments to inhibit mTORC1. Our observations indicate that TUFT1 is a key regulator of the mTORC1 pathway and suggest that it is a promising therapeutic target or a biomarker for tumor progression.UTokyo FOCUS Articles掲載「がんの増殖・転移を促進する新規因子の同定 小胞輸送を標的とする新しいがん治療戦略への可能性」 https://www.u-tokyo.ac.jp/focus/ja/articles/z0508_00119.htmlUTokyo FOCUS Articles "Possible target for future cancer treatment : Deregulation of system to move molecules in the cell may promote tumor growth, metastasis" https://www.u-tokyo.ac.jp/focus/en/articles/z0508_00120.htm

    Predicting Novel Binding Modes of Agonists to β Adrenergic Receptors Using All-Atom Molecular Dynamics Simulations

    Get PDF
    Understanding the binding mode of agonists to adrenergic receptors is crucial to enabling improved rational design of new therapeutic agents. However, so far the high conformational flexibility of G protein-coupled receptors has been an obstacle to obtaining structural information on agonist binding at atomic resolution. In this study, we report microsecond classical molecular dynamics simulations of β1 and β2 adrenergic receptors bound to the full agonist isoprenaline and in their unliganded form. These simulations show a novel agonist binding mode that differs from the one found for antagonists in the crystal structures and from the docking poses reported by in silico docking studies performed on rigid receptors. Internal water molecules contribute to the stabilization of novel interactions between ligand and receptor, both at the interface of helices V and VI with the catechol group of isoprenaline as well as at the interface of helices III and VII with the ethanolamine moiety of the ligand. Despite the fact that the characteristic N-C-C-OH motif is identical in the co-crystallized ligands and in the full agonist isoprenaline, the interaction network between this group and the anchor site formed by Asp(3.32) and Asn(7.39) is substantially different between agonists and inverse agonists/antagonists due to two water molecules that enter the cavity and contribute to the stabilization of a novel network of interactions. These new binding poses, together with observed conformational changes in the extracellular loops, suggest possible determinants of receptor specificity

    An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-β signalling

    Get PDF
    Transforming growth factor (TGF)-β induces various cellular responses principally through Smad-dependent transcriptional regulation. Activated Smad complexes cooperate with transcription factors in regulating a group of target genes. The target genes controlled by the same Smad-cofactor complexes are denoted a synexpression group. We found that an Id-like helix-loop-helix protein, human homologue of Maid (HHM), is a synexpression group-restricted regulator of TGF-β signalling. HHM suppressed TGF-β-induced growth inhibition and cell migration but not epithelial–mesenchymal transition. In addition, HHM inhibited TGF-β-induced expression of plasminogen activator inhibitor-type 1 (PAI-1), PDGF-B, and p21WAF, but not Snail. We identified a basic-helix-loop-helix protein, Olig1, as one of the Smad-binding transcription factors affected by HHM. Olig1 interacted with Smad2/3 in response to TGF-β stimulation, and was involved in transcriptional activation of PAI-1 and PDGF-B. HHM, but not Id proteins, inhibited TGF-β signalling-dependent association of Olig1 with Smad2/3 through physical interaction with Olig1. HHM thus appears to regulate a subset of TGF-β target genes including the Olig1-Smad synexpression group. HHM is the first example of a cellular response-selective regulator of TGF-β signalling with clearly determined mechanisms

    Binding Pockets of the β 1

    No full text
    corecore