24 research outputs found

    Analysis and Steps to Mitigate Heat Exchanger Fouling in an Aromatics Plant

    Get PDF
    A heat exchanger, upstream a distillation tower for the separation of BTX (benzene, toluene, xylene) from crude benzene in an aromatics plant, experiences heavy fouling. The fouling mechanism and countermeasures to mitigate or eliminate it, were investigated. An Alcor Hot Liquid Process Simulator (HLPS)was used for the fouling rate measurement. The main mechanism is a combination of precipitation fouling and chemical reaction fouling. Effects, such as temperature, vapor ratio (vapor mole fraction of the fluid), heater materials, surface roughness and the addition of some different types of chemicals were studied. From the experiments, some countermeasures for this fouling were proposed. A decrease in the vapor liquid ratio and a continuous supply of the more effective antifoulant chemical (dispersant) successfully reduced fouling in the plant

    Measurement and Modeling for the Mitigation of Organic Crystallization Fouling

    Get PDF
    One of the aromatic compound plants in Mitsubishi Chemical Corporation has a heavy crystallization fouling problem. In order to solve this problem, using a low power gamma ray sensor, we found the location of heaviest fouling and measured the fouling growth rate. We also made a crystallization fouling laboratory test unit (simulator) to study the effects of some factors, such as temperature, liquid velocity, surface roughness and liquid composition. Fouling rates of the industrial plant cooler and the laboratory fouling test unit were modeled using a combination of Kern-Seaton and Reitzer models. However, the parameters of the plant and test unit did not agree with each other, perhaps because of scale up problems. We also measured the melting process (removal) of the fouling with the test unit. The heat flux necessary to melt the foulant was measured and used for the actual plant melting system. In the industrial plant, a steam trace melting system was installed at the position of heaviest fouling, and the plant now runs better than before

    IL-12 and IL-18 Induction and Subsequent NKT Activation Effects of the Japanese Botanical Medicine Juzentaihoto

    Get PDF
    In this study, we first measured some cytokine concentrations in the serum of patients treated with Juzentaihoto (JTT). Of the cytokines measured interleukin (IL) -18 was the most prominently up-regulated cytokine in the serum of patients under long term JTT administration. We next evaluated the effects of JTT in mice, focusing especially on natural killer T (NKT) cell induction. Mice fed JTT were compared to control group ones. After sacrifice, the liver was fixed, embedded and stained. Transmission electron microscope (TEM) observations were performed. Although the mice receiving the herbal medicine had same appearance, their livers were infiltrated with massive mononuclear cells, some of which were aggregated to form clusters. Immunohistochemical staining revealed that there was abundant cytokine expression of IL-12 and IL-18 in the liver of JTT treated mice. To clarify what the key molecules that induce immunological restoration with JTT might be, we next examined in vitro lymphocyte cultures. Mononuclear cells isolated and prepared from healthy volunteers were cultured with and without JTT. Within 24 hours, JTT induced the IL-12 and IL-18 production and later (72 hours) induction of interferon (IFN)-gamma. Oral administration of JTT may induce the expression of IL-12 in the early stage, and IL-18 in the chronic stage, followed by NKT induction. Their activation, following immunological restoration could contribute to anti-tumor effects

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    High expression of MeCP2 in JC virus-infected cells of progressive multifocal leukoencephalopathy brains

    Get PDF
    Mutations of the methyl CpG binding protein 2 (MeCP2) gene are a major cause of Rett syndrome. To investigate whether the expression of this gene was related to JC virus (JCV) infection, we examined brains of four progressive multifocal leukoencephalopathy (PML) patients. JCV infection was confirmed by immunohistochemical labeling with antibodies against JCV VP1, Agnoprotein and large T antigen. MeCP2 expression was examined by immunohistochemistry using a specific polyclonal antibody against MeCP2. In normal brains and uninfected cortices of PML brains, MeCP2 expression was observed in the nuclei of neurons, but not observed in glial and endothelial cell nuclei. In PML brains, however, intense immunolabeling was observed in abnormally enlarged glial nuclei of JCV-infected cells. Double immunolabeling using antibodies against large T antigen (visualized as blue) and MeCP2 (visualised as red) revealed purple JCV infected nuclei, which confirmed that the JCV infected nuclei expressed MeCP2. We conclude that MeCP2 is highly expressed in the JCV infected nuclei of PML brain and these results may provide a new insight into the mechanism which regulates the MeCP2 expression in glial cells by the infection of JCV
    corecore