14 research outputs found

    Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility.

    Get PDF
    Heterogeneity of embryological origins is a hallmark of vascular smooth muscle cells (SMCs) and may influence the development of vascular disease. Differentiation of human pluripotent stem cells (hPSCs) into developmental origin-specific SMC subtypes remains elusive. Here we describe a chemically defined protocol in which hPSCs were initially induced to form neuroectoderm, lateral plate mesoderm or paraxial mesoderm. These intermediate populations were further differentiated toward SMCs (>80% MYH11(+) and ACTA2(+)), which displayed contractile ability in response to vasoconstrictors and invested perivascular regions in vivo. Derived SMC subtypes recapitulated the unique proliferative and secretory responses to cytokines previously documented in studies using aortic SMCs of distinct origins. Notably, this system predicted increased extracellular matrix degradation by SMCs derived from lateral plate mesoderm, which was confirmed using rat aortic SMCs from corresponding origins. This differentiation approach will have broad applications in modeling origin-dependent disease susceptibility and in developing bioengineered vascular grafts for regenerative medicine

    Pharmacological Fingerprints of Contextual Uncertainty

    Get PDF
    Successful interaction with the environment requires flexible updating of our beliefs about the world. By estimating the likelihood of future events, it is possible to prepare appropriate actions in advance and execute fast, accurate motor responses. According to theoretical proposals, agents track the variability arising from changing environments by computing various forms of uncertainty. Several neuromodulators have been linked to uncertainty signalling, but comprehensive empirical characterisation of their relative contributions to perceptual belief updating, and to the selection of motor responses, is lacking. Here we assess the roles of noradrenaline, acetylcholine, and dopamine within a single, unified computational framework of uncertainty. Using pharmacological interventions in a sample of 128 healthy human volunteers and a hierarchical Bayesian learning model, we characterise the influences of noradrenergic, cholinergic, and dopaminergic receptor antagonism on individual computations of uncertainty during a probabilistic serial reaction time task. We propose that noradrenaline influences learning of uncertain events arising from unexpected changes in the environment. In contrast, acetylcholine balances attribution of uncertainty to chance fluctuations within an environmental context, defined by a stable set of probabilistic associations, or to gross environmental violations following a contextual switch. Dopamine supports the use of uncertainty representations to engender fast, adaptive responses. \ua9 2016 Marshall et al

    Solar/Wind Hydrogen Fueling Station at IIT (semester?), IPRO 304B

    No full text
    The objective of this project is to design a renewably powered hydrogen fuelling station at IIT to be part of the Illinois Hydrogen Highway. Based on past recommendations a project site will be selected for the fuelling station. This site will also include a wind turbine and solar panel array to capture renewable energy. The principles of process design will be used to layout hydrogen production, storage, and implementation of renewable energy technologies. The stations will meet all local codes for hydrogen storage, production, and usage. This station will be designed in conjunction with the House of the Future, which is part of IIT’s Sustainable Village.Deliverables for IPRO 304B: Solar/Wind Hydrogen Fueling Station at IIT for the Spring 2005 semeste

    Solar/Wind Hydrogen Fueling Station at IIT (semester?), IPRO 304B: Solar Wind Hydrogen Fueling Station IPRO 304B Poster Sp05

    No full text
    The objective of this project is to design a renewably powered hydrogen fuelling station at IIT to be part of the Illinois Hydrogen Highway. Based on past recommendations a project site will be selected for the fuelling station. This site will also include a wind turbine and solar panel array to capture renewable energy. The principles of process design will be used to layout hydrogen production, storage, and implementation of renewable energy technologies. The stations will meet all local codes for hydrogen storage, production, and usage. This station will be designed in conjunction with the House of the Future, which is part of IIT’s Sustainable Village.Deliverables for IPRO 304B: Solar/Wind Hydrogen Fueling Station at IIT for the Spring 2005 semeste

    Solar/Wind Hydrogen Fueling Station at IIT (semester?), IPRO 304B: Solar Wind Hydrogen Fueling Station IPRO 304B Project Plan Sp05

    No full text
    The objective of this project is to design a renewably powered hydrogen fuelling station at IIT to be part of the Illinois Hydrogen Highway. Based on past recommendations a project site will be selected for the fuelling station. This site will also include a wind turbine and solar panel array to capture renewable energy. The principles of process design will be used to layout hydrogen production, storage, and implementation of renewable energy technologies. The stations will meet all local codes for hydrogen storage, production, and usage. This station will be designed in conjunction with the House of the Future, which is part of IIT’s Sustainable Village.Deliverables for IPRO 304B: Solar/Wind Hydrogen Fueling Station at IIT for the Spring 2005 semeste
    corecore