4,241 research outputs found
Finite Temperature Effects in One-dimensional Mott-Hubbard Insulator: Angle-Resolved Photoemission Study of Na_{0.96}V_{2}O_{5}
We have made an angle-resolved photoemission study of a one-dimensional (1D)
Mott-Hubbard insulator Na_{0.96}V_{2}O_{5} and found that the spectra of the V
3d lower Hubbard band are strongly dependent on the temperature. We have
calculated the one-particle spectral function of the one-dimensional t-J model
at finite temperatures by exact diagonalization and compared them with the
experimental results. Good overall agreement is obtained between experiment and
theory. The strong finite temperature effects are discussed in terms of the
existence of the ``Fermi surface'' of the spinon band.Comment: 4 pages, 3 figure
Two component model for X-ray emission of radio selected QSO's
Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity
Continuum radiation from active galactic nuclei: A statistical study
The physics of the continuum spectrum of active galactic nuclei (AGNs) was examined using a large data set and rigorous statistical methods. A data base was constructed for 469 objects which include radio selected quasars, optically selected quasars, X-ray selected AGNs, BL Lac objects, and optically unidentified compact radio sources. Each object has measurements of its radio, optical, X-ray core continuum luminosity, though many of them are upper limits. Since many radio sources have extended components, the core component were carefully selected out from the total radio luminosity. With survival analysis statistical methods, which can treat upper limits correctly, these data can yield better statistical results than those previously obtained. A variety of statistical tests are performed, such as the comparison of the luminosity functions in different subsamples, and linear regressions of luminosities in different bands. Interpretation of the results leads to the following tentative conclusions: the main emission mechanism of optically selected quasars and X-ray selected AGNs is thermal, while that of BL Lac objects is synchrotron; radio selected quasars may have two different emission mechanisms in the X-ray band; BL Lac objects appear to be special cases of the radio selected quasars; some compact radio sources show the possibility of synchrotron self-Compton (SSC) in the optical band; and the spectral index between the optical and the X-ray bands depends on the optical luminosity
Small coupling limit and multiple solutions to the Dirichlet Problem for Yang Mills connections in 4 dimensions - Part I
In this paper (Part I) and its sequels (Part II and Part III), we analyze the
structure of the space of solutions to the epsilon-Dirichlet problem for the
Yang-Mills equations on the 4-dimensional disk, for small values of the
coupling constant epsilon. These are in one-to-one correspondence with
solutions to the Dirichlet problem for the Yang Mills equations, for small
boundary data. We prove the existence of multiple solutions, and, in
particular, non minimal ones, and establish a Morse Theory for this non-compact
variational problem. In part I, we describe the problem, state the main
theorems and do the first part of the proof. This consists in transforming the
problem into a finite dimensional problem, by seeking solutions that are
approximated by the connected sum of a minimal solution with an instanton, plus
a correction term due to the boundary. An auxiliary equation is introduced that
allows us to solve the problem orthogonally to the tangent space to the space
of approximate solutions. In Part II, the finite dimensional problem is solved
via the Ljusternik-Schirelman theory, and the existence proofs are completed.
In Part III, we prove that the space of gauge equivalence classes of Sobolev
connections with prescribed boundary value is a smooth manifold, as well as
some technical lemmas used in Part I. The methods employed still work when the
4-dimensional disk is replaced by a more general compact manifold with
boundary, and SU(2) is replaced by any compact Lie group
Evidence of non-thermal X-ray emission from radio lobes of Cygnus A
Using deep Chandra ACIS observation data for Cygnus A, we report evidence of
non-thermal X-ray emission from radio lobes surrounded by a rich intra-cluster
medium (ICM). The diffuse X-ray emission, which are associated with the eastern
and western radio lobes, were observed in a 0.7--7 keV Chandra$ ACIS image. The
lobe spectra are reproduced with not only a single-temperature Mekal model,
such as that of the surrounding ICM component, but also an additional power-law
(PL) model. The X-ray flux densities of PL components for the eastern and
western lobes at 1 keV are derived as 77.7^{+28.9}_{-31.9} nJy and
52.4^{+42.9}_{-42.4} nJy, respectively, and the photon indices are
1.69^{+0.07}_{-0.13} and 1.84^{+2.90}_{-0.12}, respectively. The non-thermal
component is considered to be produced via the inverse Compton (IC) process, as
is often seen in the X-ray emission from radio lobes. From a re-analysis of
radio observation data, the multiwavelength spectra strongly suggest that the
seed photon source of the IC X-rays includes both cosmic microwave background
radiation and synchrotron radiation from the lobes. The derived parameters
indicate significant dominance of the electron energy density over the magnetic
field energy density in the Cygnus A lobes under the rich ICM environment.Comment: 8 pages, 5 figures, accepted for publication in Ap
- …