157 research outputs found

    Stability of hexafluoroacetylacetone molecules on metallic and oxidized nickel surfaces in atomic-layer-etching processes

    Get PDF
    Abdulrahman H. Basher, Marjan Krstić, Takae Takeuchi, Michiro Isobe, Tomoko Ito, Masato Kiuchi, Kazuhiro Karahashi, Wolfgang Wenzel, and Satoshi Hamaguchi, Journal of Vacuum Science & Technology A 38:2, (2020); licensed under a Creative Commons Attribution (CC BY) license

    Giant multiple caloric effects in charge transition ferrimagnet

    Get PDF
    磁場と圧力でマルチに冷却可能な酸化物新材料 --フェリ磁性電荷転移酸化物におけるマルチ熱量効果の実証--. 京都大学プレスリリース. 2021-06-22.Caloric effects of solids can provide us with innovative refrigeration systems more efficient and environment-friendly than the widely-used conventional vapor-compression cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technologies. Here we discovered that the quadruple perovskite structure ferrimagnet BiCu₃Cr₄O₁₂ shows large multiple caloric effects at the first-order charge transition occurring around 190 K. Large latent heat and the corresponding isothermal entropy change, 28.2 J K⁻¹ kg⁻¹, can be utilized by applying both magnetic fields (a magnetocaloric effect) and pressure (a barocaloric effect). Adiabatic temperature changes reach 3.9 K for the 50 kOe magnetic field and 4.8 K for the 4.9 kbar pressure, and thus highly efficient thermal controls are achieved in multiple ways

    Poly(A)-specific ribonuclease regulates the processing of small-subunit rRNAs in human cells

    Get PDF
    Ribosome biogenesis occurs successively in the nucleolus, nucleoplasm, and cytoplasm. Maturation of the ribosomal small subunit is completed in the cytoplasm by incorporation of a particular class of ribosomal proteins and final cleavage of 18S-E pre-rRNA (18S-E). Here, we show that poly(A)-specific ribonuclease (PARN) participates in steps leading to 18S-E maturation in human cells. We found PARN as a novel component of the pre-40S particle pulled down with the pre-ribosome factor LTV1 or Bystin. Reverse pull-down analysis revealed that PARN is a constitutive component of the Bystin-associated pre-40S particle. Knockdown of PARN or exogenous expression of an enzyme-dead PARN mutant (D28A) accumulated 18S-E in both the cytoplasm and nucleus. Moreover, expression of D28A accumulated 18S-E in Bystin-associated pre-40S particles, suggesting that the enzymatic activity of PARN is necessary for the release of 18S-E from Bystin-associated pre-40S particles. Finally, RNase H–based fragmentation analysis and 3΄-sequence analysis of 18S-E species present in cells expressing wild-type PARN or D28A suggested that PARN degrades the extended regions encompassing nucleotides 5–44 at the 3΄ end of mature 18S rRNA. Our results reveal a novel role for PARN in ribosome biogenesis in human cells

    TDP-43 stabilises the processing intermediates of mitochondrial transcripts

    Get PDF
    The 43-kDa trans-activating response region DNA-binding protein 43 (TDP-43) is a product of a causative gene for amyotrophic lateral sclerosis (ALS). Despite of accumulating evidence that mitochondrial dysfunction underlies the pathogenesis of TDP-43–related ALS, the roles of wild-type TDP-43 in mitochondria are unknown. Here, we show that the small TDP-43 population present in mitochondria binds directly to a subset of mitochondrial tRNAs and precursor RNA encoded in L-strand mtDNA. Upregulated expression of TDP-43 stabilised the processing intermediates of mitochondrial polycistronic transcripts and their products including the components of electron transport and 16S mt-rRNA, similar to the phenotype observed in cells deficient for mitochondrial RNase P. Conversely, TDP-43 deficiency reduced the population of processing intermediates and impaired mitochondrial function. We propose that TDP-43 has a novel role in maintaining mitochondrial homeostasis by regulating the processing of mitochondrial transcripts

    Adenovirus E4orf6 targets pp32/LANP to control the fate of ARE-containing mRNAs by perturbing the CRM1-dependent mechanism

    Get PDF
    E4orf6 plays an important role in the transportation of cellular and viral mRNAs and is known as an oncogene product of adenovirus. Here, we show that E4orf6 interacts with pp32/leucine-rich acidic nuclear protein (LANP). E4orf6 exports pp32/LANP from the nucleus to the cytoplasm with its binding partner, HuR, which binds to an AU-rich element (ARE) present within many protooncogene and cytokine mRNAs. We found that ARE-mRNAs, such as c-fos, c-myc, and cyclooxygenase-2, were also exported to and stabilized in the cytoplasm of E4orf6-expressing cells. The oncodomain of E4orf6 was necessary for both binding to pp32/LANP and effect for ARE-mRNA. C-fos mRNA was exported together with E4orf6, E1B-55kD, pp32/LANP, and HuR proteins. Moreover, inhibition of the CRM1-dependent export pathway failed to block the export of ARE-mRNAs mediated by E4orf6. Thus, E4orf6 interacts with pp32/LANP to modulate the fate of ARE-mRNAs by altering the CRM1-dependent export pathway

    A Case of Retroperitoneal Malignant Mesenchymoma

    Get PDF
    A rare case of malignant mesenchymoma of a retroperitoneal lesion, com-posed of liposarcoma and osteosarcoma, is reported. For complete resection of the tumor, two surgical operations were performed. The first operative material showed a mass measuring 20 x 20 x 10 cm, weighing 1607g, arising from the soft tissue of the left retroperitoneum and the tumor had a smooth surface and elastic-hard consistency. The secondary operative materials exhi-bited a mass measuring 10 x 5 x 3 cm, weighing 268g. The tumor was com-posed of soft gelatinous tissues and adhered to the tail of the pancreas but was separate from the spleen. More than 3 years after the secondary operation, no recurrence has been observed. Immunohistochemical examinations showed that S-100 protein and non-specific enolase were present in the liposarcoma-tous area and that vimentin was positive in the osteosarcomatous area

    Friend of Prmt1, FOP is a novel component of the nuclear SMN complex isolated using biotin affinity purification

    Get PDF
    SMN (survival motor neuron protein) complexes are essential for the biogenesis of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). During the biogenesis, the SMN complexes bound to UsnRNPs are transported from the cytoplasm to the nucleus, and moved to Cajal body (bodies)/Gems (Cajal/Gems) where the SMN complexes- UsnRNPs are subjected to additional chemical modifications and dissociated to the SMN complexes and the mature UsnRNPs. Although the mature UsnRNPs are assembled into spliceosome with newly transcribed pre-mRNA in the perichromatin fibrils at the chromatin, the role of the dissociated nuclear SMN complexes remains undetermined. In this study, we identified Friend of Prmt1 (FOP; chromatin target of Prmt1, CHTOP; C1orf77) as a novel component of the nuclear SMN complexes by the biotin affinity purification, coupled with the mass spectrometry-based protein identification. FOP was associated with SMN, Gemines 2, 3, 4, 6, and 8, unrip, and fragile X mental retardation 1 protein (FMR1), as well as with U5and U6 snRNAs in the nucleus, but not with Sm proteins, Gemin5, coilin, and U1 and U2snRNAs. Using the quantitative proteomic method with SILAC coupled with RNA interference, we also showed that FOP is required for the association of the SMN complexes with hnRNPs, histone proteins, and various RNA-binding proteins. It is reported that FOP localizes mainly in the nuclear speckles, binds chromatin, and plays a role in mRNA transcriptional regulation. Our present data suggest that the nuclear SMN complex containing FOP participates in the process of mRNA post-transcriptional regulation

    EMPRESS. XI. SDSS and JWST Search for Local and z~4-5 Extremely Metal-Poor Galaxies (EMPGs): Clustering and Chemical Properties of Local EMPGs

    Full text link
    We search for local extremely metal-poor galaxies (EMPGs), selecting photometric candidates by broadband color excess and machine-learning techniques with the SDSS photometric data. After removing stellar contaminants by shallow spectroscopy with Seimei and Nayuta telescopes, we confirm that three candidates are EMPGs with 0.05--0.1 ZZ_\odot by deep Magellan/MagE spectroscopy for faint {\sc[Oiii]}λ\lambda4363 lines. Using a statistical sample consisting of 105 spectroscopically-confirmed EMPGs taken from our study and the literature, we calculate cross-correlation function (CCF) of the EMPGs and all SDSS galaxies to quantify environments of EMPGs. Comparing another CCF of all SDSS galaxies and comparison SDSS galaxies in the same stellar mass range (107.0108.4M10^{7.0}-10^{8.4} M_\odot), we find no significant (>1σ>1\sigma) difference between these two CCFs. We also compare mass-metallicity relations (MZRs) of the EMPGs and those of galaxies at zz\sim 0--4 with a steady chemical evolution model and find that the EMPG MZR is comparable with the model prediction on average. These clustering and chemical properties of EMPGs are explained by a scenario of stochastic metal-poor gas accretion on metal-rich galaxies showing metal-poor star formation. Extending the broadband color-excess technique to a high-zz EMPG search, we select 17 candidates of zz\sim 4--5 EMPGs with the deep (30\simeq30 mag) near-infrared JWST/NIRCam images obtained by ERO and ERS programs. We find galaxy candidates with negligible {\sc[Oiii]}λλ\lambda\lambda4959,5007 emission weaker than the local EMPGs and known high-zz galaxies, suggesting that some of these candidates may fall in 0--0.01 ZZ_\odot, which potentially break the lowest metallicity limit known to date

    EMPRESS. II. Highly Fe-Enriched Metal-poor Galaxies with 1.0\sim 1.0 (Fe/O)_\odot and 0.020.02 (O/H)_\odot : Possible Traces of Super Massive (>300M>300 M_{\odot}) Stars in Early Galaxies

    Full text link
    We present element abundance ratios and ionizing radiation of local young low-mass (~10610^{6} M_sun) extremely metal poor galaxies (EMPGs) with a 2% solar oxygen abundance (O/H)_sun and a high specific star-formation rate (sSFR~300 Gyr1^{-1}), and other (extremely) metal poor galaxies, which are compiled from Extremely Metal-Poor Representatives Explored by the Subaru Survey (EMPRESS) and the literature. Weak emission lines such as [FeIII]4658 and HeII4686 are detected in very deep optical spectra of the EMPGs taken with 8m-class telescopes including Keck and Subaru (Kojima et al. 2019, Izotov et al. 2018), enabling us to derive element abundance ratios with photoionization models. We find that neon- and argon-to-oxygen ratios are comparable to those of known local dwarf galaxies, and that the nitrogen-to-oxygen abundance ratios (N/O) are lower than 20% (N/O)_sun consistent with the low oxygen abundance. However, the iron-to-oxygen abundance ratios (Fe/O) of the EMPGs are generally high; the EMPGs with the 2%-solar oxygen abundance show high Fe/O ratios of ~90-140% (Fe/O)_sun, which are unlikely explained by suggested scenarios of Type Ia supernova iron productions, iron's dust depletion, and metal-poor gas inflow onto previously metal-riched galaxies with solar abundances. Moreover, these EMPGs have very high HeII4686/Hβ\beta ratios of ~1/40, which are not reproduced by existing models of high-mass X-ray binaries whose progenitor stellar masses are less than 120 M_sun. Comparing stellar-nucleosynthesis and photoionization models with a comprehensive sample of EMPGs identified by this and previous EMPG studies, we propose that both the high Fe/O ratios and the high HeII4686/Hβ\beta ratios are explained by the past existence of super massive (>>300 M_sun) stars, which may evolve into intermediate-mass black holes (\gtrsim100 M_sun).Comment: ApJ in press. 23 pages, 7 Figures, 6 Table
    corecore