455 research outputs found
Occurrence and Treatment of Bone Atrophic Non-Unions Investigated by an Integrative Approach
Recently developed atrophic non-union models are a good representation of the clinical situation in which many nonunions develop. Based on previous experimental studies with these atrophic non-union models, it was hypothesized that in order to obtain successful fracture healing, blood vessels, growth factors, and (proliferative) precursor cells all need to be present in the callus at the same time. This study uses a combined in vivo-in silico approach to investigate these different aspects (vasculature, growth factors, cell proliferation). The mathematical model, initially developed for the study of normal fracture healing, is able to capture essential aspects of the in vivo atrophic non-union model despite a number of deviations that are mainly due to simplifications in the in silico model. The mathematical model is subsequently used to test possible
treatment strategies for atrophic non-unions (i.e. cell transplant at post-osteotomy, week 3). Preliminary in vivo experiments corroborate the numerical predictions. Finally, the mathematical model is applied to explain experimental observations and
identify potentially crucial steps in the treatments and can thereby be used to optimize experimental and clinical studies in this area. This study demonstrates the potential of the combined in silico-in vivo approach and its clinical implications for the early treatment of patients with problematic fractures
Aortic valvuloplasty of calcific aortic stenosis with monofoil and trefoil balloon catheters: practical considerations
In order to evaluate the relation between balloon design (monofoil, trefoil) and valvular configuration, experimental aortic valvuloplasty was performed in four post-mortem hearts with calcific aortic sten
Heterologous expression of the yeast arsenite efflux system ACR3 improves Arabidopsis thaliana tolerance to arsenic stress
Arsenic contamination has a negative impact on crop cultivation and on human health. As yet, no proteins have been identified in plants that mediate the extrusion of arsenic. Here, we heterologously expressed the yeast (Saccharomyces cerevisiae) arsenite efflux transporter ACR3 into Arabidopsis to evaluate how this affects plant tolerance and tissue arsenic contents. ACR3 was cloned from yeast and transformed into wild-type and nip7;1 Arabidopsis. Arsenic tolerance was determined at the cellular level using vitality stains in protoplasts, in intact seedlings grown on agar plates and in mature plants grown hydroponically. Arsenic efflux was measured from protoplasts and from intact plants, and arsenic levels were measured in roots and shoots of plants exposed to arsenate. At the cellular level, all transgenic lines showed increased tolerance to arsenite and arsenate and a greater capacity for arsenate efflux. With intact plants, three of four stably transformed lines showed improved growth, whereas only transgenic lines in the wild-type background showed increased efflux of arsenite into the external medium. The presence of ACR3 hardly affected tissue arsenic levels, but increased arsenic translocation to the shoot. Heterologous expression of yeast ACR3 endows plants with greater arsenic resistance, but does not lower significantly arsenic tissue levels
Charlie Chaplin and gesture training in severe aphasia: A controlled double-blind single-case experimental design
Background
Aphasia following a stroke is a frequent and disabling condition that decreases quality of life. The use of gesture has been proposed as a way to enhance aphasia recovery.
Objective
We aimed to explore whether 2 types of gesture interventions could improve communication in individuals with severe aphasia.
Methods
This was a pilot study performed at home in routine care by an outreach team. The study had a controlled double-blind single-case experimental design (SCED): a controlled multiple baseline design across 3 participants and 2 behaviors (gesture and naming). Three male patients with stroke-induced severe chronic aphasia, non-functional perseverative speech and severe associated impairments underwent a passive gesture intervention, in which participants watched movies selected for their intensive use of gesture, and an active gesture intervention, in which they actively practiced gestures by using visual action therapy. The main outcome measures were naming score, gesture score and nonverbal subscale score of the Lillois Test of Communication, with 3-month follow-up.
Results
In all 3 participants, gesture interventions improved the ability to gesture a list of words (Tau-U = 0.38–0.67 for combined gesture intervention effect) and increased nonverbal communication activity. Benefits were maintained at 3-month follow-up.
Conclusions
Mute films that use intensive nonverbal communication may be a useful add-on to speech therapy for individuals with aphasia. Improving naming in severe and chronic aphasia may not be feasible, and more effort could be devoted to improving gesture-based and nonverbal communication
Human CD34+/CD90+ ASCs Are Capable of Growing as Sphere Clusters, Producing High Levels of VEGF and Forming Capillaries
Background: Human adult adipose tissue is an abundant source of mesenchymal stem cells (MSCs). Moreover, it is an easily
accessible site producing a considerable amount of stem cells.
Methodology/Principal Findings: In this study, we have selected and characterized stem cells within the stromal vascular
fraction (SVF) of human adult adipose tissue with the aim of understanding their differentiation capabilities and
performance. We have found, within the SVF, different cell populations expressing MSC markers – including CD34, CD90,
CD29, CD44, CD105, and CD117 – and endothelial-progenitor-cell markers – including CD34, CD90, CD44, and CD54.
Interestingly, CD34+/CD90+ cells formed sphere clusters, when placed in non-adherent growth conditions. Moreover, they
showed a high proliferative capability, a telomerase activity that was significantly higher than that found in differentiated
cells, and contained a fraction of cells displaying the phenotype of a side population. When cultured in adipogenic medium,
CD34+/CD90+ quickly differentiated into adipocytes. In addition, they differentiated into endothelial cells (CD31+/VEGF+/Flk-
1+) and, when placed in methylcellulose, were capable of forming capillary-like structures producing a high level of VEGF, as
substantiated with ELISA tests.
Conclusions/Significance: Our results demonstrate, for the first time, that CD34+/CD90+ cells of human adipose tissue are
capable of forming sphere clusters, when grown in free-floating conditions, and differentiate in endothelial cells that form
capillary-like structures in methylcellulose. These cells might be suitable for tissue reconstruction in regenerative medicine,
especially when patients need treatments for vascular disease
Enhanced angiogenic potency of monocytic endothelial progenitor cells in patients with systemic sclerosis
Induction of vasculogenesis in breast cancer models
Recently, there have been reports of postnatal vasculogenesis in cases of ischaemia models. The aim of the present study is to provide evidence of postnatal vasculogenesis in breast-cancer–bearing mice. Based on cell surface antigen expression, we isolated endothelial precursor cells from bone marrow, peripheral blood and tumour-infiltrating cells from mice that had received six human breast cancer xenografts. In all three areas (bone marrow, peripheral blood and tumour-infiltrating cells), endothelial precursor cell population was elevated in all transplanted mice. Differentiation and migration activities of endothelial precursor cells were measured by comparing levels of the endothelial precursor cell maturation markers Flk-1, Flt-1, Tie2, VE-cadherin and CD31 among these three areas. The endothelial precursor cell population was 14% or greater in the gated lymphocyte-size fraction of the inflammatory breast cancer xenograft named WIBC-9, which exhibits a hypervascular structure and de novo formation of vascular channels, namely vasculogenic mimicry (Shirakawa et al, 2001). In vitro, bone marrow-derived endothelial precursor cells from four human breast cancer xenografts proliferated and formed multiple clusters of spindle-shaped attaching cells on a vitronectin-coated dish. The attaching cells, which incorporated DiI-labelled acetylated low-density lipoprotein (DiI-acLDL) and were negative for Mac-1. The putative bone marrow derived endothelial precursor cell subset, which was double positive of CD34 and Flk-1, and comparative bone marrow derived CD34 positive with Flk-1 negative subset were cultured. The former subset incorporated DiI-acLDL and were integrated with HUVECs. Furthermore, they demonstrated significantly higher levels of murine vascular endothelial growth factor and interleukin-8 in culture supernatant on time course by enzyme-linked immunosorbent assay. These findings constitute direct evidence that breast cancer induces postnatal vasculogenesis in vivo
Intra aortic balloon pump: literature review of risk factors related to complications of the intraaortic balloon pump
The increasing use of the intra aortic balloon pump is attributed to the relatively easy percutaneous insertion and the low threshold of use over the past few years, especially in elderly patients with multi-vessel diseases and an affected ejection fraction
Hyperdominant left anterior descending artery continuing across left ventricular apex as posterior descending artery coexistent with aortic stenosis
We describe, in a 61 year old man, with coexistent aortic stenosis, the anomalous origin of posterior descending artery (PDA) from a stenotic left anterior descending (LAD) artery, as its continuation across the left ventricular apex, in the presence of a normally arising and atretic proximal right coronary artery. The patient underwent mechanical aortic valve replacement and triple coronary artery bypass grafting and made an uneventful recovery. To the best of our knowledge, origin of PDA as a continuation of LAD across the left ventricular apex in the presence of a normally arising but atretic proximal right coronary artery has never been described in literature before. There is one previous case report of continuation of LAD as PDA across the left ventricular apex in a patient with single left coronary coronary artery with an absent right coronary ostium. As the blood supply to the entire interventricular septum is derived from this "hyperdominant" LAD system, stenosis of LAD can be catastrophic. A review of literature of the anomalies of right coronary artery and, in particular, of its anomalous origin from LAD and its coexistence with aortic stenosis, is presented
Capillary Regeneration in Scleroderma: Stem Cell Therapy Reverses Phenotype?
BACKGROUND. Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS. We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue), antiangiogenic interferon α (overexpressed in the scleroderma dermis) and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon α and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE. These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease. Since rarefaction has been little studied, these data may have implications for other diseases characterized by loss of capillaries including hypertension, congestive heart failure and scar formation.Scleroderma Research Foundatio
- …
