7,837 research outputs found

    Effect of frictional boundary conditions and percentage area reduction on the extrusion pressure of Aluminum AA6063 alloy using FE analysis modelling

    Get PDF
    © 2020 by the authors; licensee Growing Science, Canada. This is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).Finite Element Analysis was carried out to describe the effect of frictional boundary conditions and percentage reduction on deformation modelling (forward extrusion) of Aluminum AA6063 alloy. Curved die profiles of regular polygons (square, hexagonal, heptagonal, and octagonal) were designed using MATLAB R2009b and Autodesk Inventor 2013 to generate the coordinate and thesolid CAD model of the die profile respectively form a circular billet. The numerical analysis was performed using DeformTM-3D commercial package with frictional boundary conditions of 0.38 and 0.75 representing the wet and dry condition and varying the percentage reduction of 50%, 70%, and 90%. The results of the temperature distribution, effective stress, effective strain, andstrain rate were reported. As the percentage area reduction increases, the extrusion pressure also increases with an increasing frictional condition, and die length. Also, extrusion pressure decreases when the side of the polygon increases from square-shaped section follow by hexagonal shaped-section and least in octagonal shaped-section for both friction factors and percentage areareductions. For a given percentage reduction and cross-sectional area, there is no distinct difference between the predictive loads for the shaped-polygons. When the result of this analysis is compared with the experimental results from the literature, it is evident that DeformTM-3D is an effective tool for finite element analysis of non-isothermal deformation processes.Peer reviewedFinal Published versio

    Experimental and numerical prediction of extrusion load at different lubricating conditions of aluminium 6063 alloy in backward cup extrusion

    Get PDF
    In the present research work using a backward cup extrusion (BCE) die profile, different lubricating conditions on aluminum alloy AA6063 have been experimentally and numerically investigated to predict the extrusion load. It was obvious that due to an increase in applications of the extrusion process, many researchers have worked on the extrusion process using different methods to achieve their aims. This experiment was conducted with three different lubricants namely: Castor oil, Palm Oil and tropical coconut oil; as well as without lubricants. Different lubricating conditions were employed of varying strain rates ranges from 1.5×10-3s-1, 2.0×10-3s-1, 2.5×10-3s-1, and 3.0×10-3s-1; Numerical analysis and simulation for dry and lubricated conditions during extrusion load were also performed using DEFORM 3D software. The results show that prediction extrusion load increases with increasing strain rates. The maximum extrusion load was found to be higher for extrusion without lubricants. In all cases of strain rate, palm oil showed a lower extrusion load compared to the other lubricants. Castor oil indicated the highest extrusion load when the experiment was carried out using lubrication. There was a consistent agreement between the result gotten from the experiment and simulation results of the extrusion load-strike curve.Peer reviewedFinal Published versio

    Synthesis and characterization of silver nanoarticles from extract of Eucalyptus citriodora

    Get PDF
    The primary motivation for the study to develop simple eco-friendly green synthesis of silver nanoparticles using leaf extract of Eucalyptus citriodora as reducing and capping agent. The green synthesis process was quite fast and silver nanoparticles were formed within 0.5 h. The synthesis of the particles was observed by UV-visible spectroscopy by noting increase in absorbance. Characterization of the particles was carried out by X-ray diffraction, FTIR and electron microscopy. The developed nanoparticles demonstrated that E. citriodora is good source of reducing agents. UV-visible absorption spectra of the reaction medium containing silver nanoparticles showed maximum absorbance at 460 nm. FTIR analysis confirmed reduction of Ag+ to Ag0 atom in silver nanoparticles. The XRD pattern revealed the crystalline structure of silver nanoparticles. The SEM analysis showed the size and shape of the nanoparticles. The method being green, fast, easy and cost effective can be recommended for large scale production of AgNPs for their use in food, medicine and materials

    CP Asymmetry in Charged Higgs Decays to Chargino-Neutralino

    Full text link
    We analyze the charge-parity (CP) asymmetry in the charged Higgs boson decays to chargino-neutralino pairs, H^- -> chargino_i + neutralino_j. We show first that these modes have a large branching ratio for m_H^- > 600 GeV. We use Cutkosky rules to obtain the analytical formulas needed for the evaluation of the asymmetry under consideration. We then calculate the CP asymmetry in chargino-neutralino decays by including supersymmetric mass bounds, as well as constraints from b -> s gamma, (g-2)_mu, Delta\rho and electric dipole moments. Finally, we discuss observability of the asymmetry at the LHC by calculating the number of required charged Higgs events to observe the asymmetry for each decay channel. We show that the inclusion of constraints considerably reduces the projected CP asymmetry, and that the optimal channel for observing the asymmetry is H^- -> chargino_1 + neutralino_2.Comment: 23 pages, 8 figures, one tabl

    On the Motion of a Rigid Body in the Presence of a Gyrostatic Momentum

    Get PDF
    In this paper, the rotational motion ofa rigid body about a fixed point in the Newtonian force field with a gyrostatic momentum l3 about z- axis is considered. The equations of motion and their first integrals are obtained and have been reduced to a quasilinear autonomous system of two degrees offreedom with one first integral. Poincaré’s small parameter method (Malkin, 1959) is applied to investigate the analytical periodic solutions of the equations of motion of the body with one point fixed. rapidly spinning about one of the principal axes of the ellipsoid of inertia. A geometric interpretation of motion is given by using Euler’s angles (Ismail, 1997a) to describe the orientation ofthe body at any instant of time

    Beats of the Magnetocapacitance Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present calculations on the magnetocapacitance of the two-dimensional electron gas in a lateral semiconductor superlattice under two-dimensional weak periodic potential modulation in the presence of a perpendicular magnetic field. Adopting a Gaussian broadening of magnetic-field-dependent width in the density of states, we present explicit and simple expressions for the magnetocapacitance, valid for the relevant weak magnetic fields and modulation strengths. As the modulation strength in both directions increase, beats of the magnetocapacitance oscillations are observed, in the low magnetic field range (Weiss-oscillations regime), which are absent in the one-dimensional weak modulation case.Comment: 11 pages, 7 figures, accepted by Mod. Phys. Lett. B (March 2007

    A Necessary and Sufficient Condition for Solving a Rigid Body Problem

    Get PDF
    In this paper, the motion of a rigid body about a fixed point under the influence of a Newtonian force field is investigated. The Euler-Poisson equations are used to represent that motion. Three first integrals of these equations are well known. The exact solutions of these equations require, in general, a fourth algebraic first integral. The necessary and sufficient condition for some functions to be a fourth first integral of the governing equations is obtained

    Mechanism of paraquat resistance in crassocephalum crepidioides (Benth.) S. moore during immature stage

    Get PDF
    The mechanism of paraquat resistance in Crassocephalum crepidioides at the six-leaf stage was investigated. The extractable paraquat was not metabolized fly the leaf tissue in the resistant (R) and susceptible (S) biotypes. Therefore, differential metabolism does not appear to play a role in the mechanism of resistance. The S biotype absorbed 44% more 14Gparaquat than the R biotype. However, more than 98% of the absorbed 14G paraquat remained on the treated leaf of both biotypes. The difference in absorption had a negative correlation with the amount of epicuticular wax as well as the cuticle of leaf surfaces in both biotypes. The results of this study suggest that differential absorption may be a factor that accounts for resistance to paraquat at the six-leaf stage

    Polynomial solutions of nonlinear integral equations

    Full text link
    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of C. Bender and E. Ben-Naim. We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.Comment: 10 page
    corecore