20,655 research outputs found
Deep-Elastic pp Scattering at LHC from Low-x Gluons
Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum
transfer range 4 GeV*2 < |t| < 10 GeV*2 is planned to be measured by the TOTEM
group. We study this process in a model where the deep-elastic scattering is
due to a single hard collision of a valence quark from one proton with a
valence quark from the other proton. The hard collision originates from the
low-x gluon cloud around one valence quark interacting with that of the other.
The low-x gluon cloud can be identified as color glass condensate and has size
~0.3 F. Our prediction is that pp differential cross section in the large |t|
region decreases smoothly as momentum transfer increases. This is in contrast
to the prediction of pp differential cross section with visible oscillations
and smaller cross sections by a large number of other models.Comment: 10 pages, including 4 figure
Beyond recurrent costs: an institutional analysis of the unsustainability of donor-supported reforms in agricultural extension
International donors have spent billions of dollars over the past four decades in developing and/or reforming the agricultural extension service delivery arrangements in developing countries. However, many of these reforms, supported through short-term projects, became unsustainable once aid funding had ceased. The unavailability of recurrent funding has predominantly been highlighted in the literature as the key reason for this undesirable outcome, while little has been written about institutional factors. The purpose of this article is to examine the usefulness of taking an institutional perspective in explaining the unsustainability of donor-supported extension reforms and derive lessons for improvement. Using a framework drawn from the school of institutionalism in a Bangladeshi case study, we have found that a reform becomes unsustainable because of poor demands for extension information and advice; missing, weak, incongruent, and perverse institutional frameworks governing the exchange of extension goods (services); and a lack of institutional learning and change during the reform process. Accordingly, we have argued that strategies for sustainable extension reforms should move beyond financial considerations and include such measures as making extension goods (services) more tangible and monetary in nature, commissioning in-depth studies to learn about local institutions, crafting new institutions and/or reforming the weak and perverse institutions prevailing in developing countries. We emphasize the need to address three categories of institutions – regulative, normative, and cultural-cognitive – and call for an alignment among them. We further argue that, in order to be sustainable, a reform should take a systemic approach in institutional capacity building and, for this to be possible, adopt a long-term program approach, as opposed to a short-term project approach
Noise-Induced Subdiffusion in Strongly Localized Quantum Systems
We consider the dynamics of strongly localized systems subject to dephasing noise with arbitrary correlation time. Although noise inevitably induces delocalization, transport in the noise-induced delocalized phase is subdiffusive in a parametrically large intermediate-time window. We argue for this intermediate-time subdiffusive regime both analytically and using numerical simulations on single-particle localized systems. Furthermore, we show that normal diffusion is restored in the long-time limit, through processes analogous to variable-range hopping. Our qualitative conclusions are also valid for interacting systems in the many-body localized phase
Magnetotransport properties of a magnetically modulated two-dimensional electron gas with the spin-orbit interaction
We study the electrical transport properties of a two-dimensional electron
gas with the Rashba spin-orbit interaction in presence of a constant
perpendicular magnetic field which is weakly modulated by , where and with
is the modulation period. We obtain the analytical expressions of the diffusive
conductivities for spin-up and spin-down electrons. The conductivities for
spin-up and spin-down electrons oscillate with different frequencies and
produce beating patterns in the amplitude of the Weiss and Shubnikov-de Haas
oscillations. We show that the Rashba strength can be determined by analyzing
the beating pattern in the Weiss oscillation. We find a simple equation which
determines the Rashba spin-orbit interaction strength if the number of Weiss
oscillations between any two successive nodes is known from the experiment. We
compare our results with the electrically modulated 2DEG with the Rashba
interaction. For completeness, we also study the beating pattern formation in
the collisional and the Hall conductivities.Comment: 11 pages, 5 figures, re-written with new result
First-order melting of a weak spin-orbit Mott insulator into a correlated metal
The electronic phase diagram of the weak spin-orbit Mott insulator
(Sr(1-x)Lax)3Ir2O7 is determined via an exhaustive experimental study. Upon
doping electrons via La substitution, an immediate collapse in resistivity
occurs along with a narrow regime of nanoscale phase separation comprised of
antiferromagnetic, insulating regions and paramagnetic, metallic puddles
persisting until x~0.04. Continued electron doping results in an abrupt,
first-order phase boundary where the Neel state is suppressed and a homogenous,
correlated, metallic state appears with an enhanced spin susceptibility and
local moments. As the metallic state is stabilized, a weak structural
distortion develops and suggests a competing instability with the parent
spin-orbit Mott state.Comment: 5 pages, 4 figure
Ga+, In+ and Tl+ Impurities in Alkali Halide Crystals: Distortion Trends
A computational study of the doping of alkali halide crystals (AX: A = Na, K;
X = Cl, Br) by ns2 cations (Ga+, In+ and Tl+) is presented. Active clusters of
increasing size (from 33 to 177 ions) are considered in order to deal with the
large scale distortions induced by the substitutional impurities. Those
clusters are embedded in accurate quantum environments representing the
surrounding crystalline lattice. The convergence of the distortion results with
the size of the active cluster is analyced for some selected impurity systems.
The most important conclusion from this study is that distortions along the
(100) and (110) crystallographic directions are not independent. Once a
reliable cluster model is found, distortion trends as a function of impurity,
alkali cation and halide anion are identified and discussed. These trends may
be useful when analycing other cation impurities in similar host lattices.Comment: LaTeX file. 7 pages and 2 pictures. Accepted for publication in J.
Chem. Phy
Isotope Effect in the Superfluid Density of HTS Cuprates: Stripes, Pseudogap and Impurities
Underdoped cuprates exhibit a normal-state pseudogap, and their spins and
doped carriers tend to spatially separate into 1- or 2-D stripes. Some view
these as central to superconductivity, others as peripheral and merely
competing. Using LaSrCuZnO we show that an oxygen
isotope effect in and in the superfluid density can be used to
distinguish between the roles of stripes and pseudogap and also to detect the
presence of impurity scattering. We conclude that stripes and pseudogap are
distinct, and both compete and coexist with superconductivity.Comment: Revised submission to PRL with added appendix on a possible isotope
effect in the effective mass, 4 pages, 3 figure
Correlation energies by the generator coordinate method: computational aspects for quadrupolar deformations
We investigate truncation schemes to reduce the computational cost of
calculating correlations by the generator coordinate method based on mean-field
wave functions. As our test nuclei, we take examples for which accurate
calculations are available. These include a strongly deformed nucleus, 156Sm, a
nucleus with strong pairing, 120Sn, the krypton isotope chain which contains
examples of soft deformations, and the lead isotope chain which includes the
doubly magic 208Pb. We find that the Gaussian overlap approximation for angular
momentum projection is effective and reduces the computational cost by an order
of magnitude. Cost savings in the deformation degrees of freedom are harder to
realize. A straightforward Gaussian overlap approximation can be applied rather
reliably to angular-momentum projected states based on configuration sets
having the same sign deformation (prolate or oblate), but matrix elements
between prolate and oblate deformations must be treated with more care. We
propose a two-dimensional GOA using a triangulation procedure to treat the
general case with both kinds of deformation. With the computational gains from
these approximations, it should be feasible to carry out a systematic
calculation of correlation energies for the nuclear mass table.Comment: 11 pages revtex, 9 eps figure
- …
