14 research outputs found

    MgyNi1-y(Hx) thin films deposited by magnetron co-sputtering

    Get PDF
    In this work we have synthesised thin films of MgyNi1-y(Hx) metal and metal hydride with y between 0 and 1. The films are deposited by magnetron co-sputtering of metallic targets of Mg and Ni. Metallic MgyNi1-y films were deposited with pure Ar plasma while MgyNi1-yHx hydride films were deposited reactively with 30% H2 in the Ar plasma. The depositions were done with a fixed substrate carrier, producing films with a spatial gradient in the Mg and Ni composition. The combinatorial method of co-sputtering gives an insight into the phase diagram of MgyNi1-y and MgyNi1-yHx, and allows us to investigate structural, optical and electrical properties of the resulting alloys. Our results show that reactive sputtering gives direct deposition of metal hydride films, with high purity in the case of Mg~2NiH~4. We have observed limited oxidation after several months of exposure to ambient conditions. MgyNi1-y and MgyNi1-yHx films might be applied for optical control in smart windows, optical sensors and as a semiconducting material for photovoltaic solar cells

    Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry

    Get PDF
    The dielectric properties of alpha-MgH2 are investigated in the photon energy range between 1 and 6.5 eV. For this purpose, a novel sample configuration and experimental setup are developed that allow both optical transmission and ellipsometric measurements of a transparent thin film in equilibrium with hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about 80% over the whole visible spectrum. The dielectric function found in this work confirms very recent band structure calculations using the GW approximation by Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
    corecore